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Abstract. Let F denote the Fourier transform on L2(R), and let T ≡
DϕMu, where Dϕ ≡ FMϕF−1, ϕ ∈ H∞(R) is inner, and |u| = 1 a.e.

This paper gives a partial description of the spectral multiplicity theory of

T . It is shown that T is absolutely continuous and is a bilateral shift of

infinite multiplicity if ϕ is not a finite Blaschke product. Similar results

are obtained for the (isometric) restrictions of T to the invariant subspaces

L2(α,∞). Specifically, these restrictions always have absolutely continuous

unitary parts, and shift parts with multiplicity equal to the multiplicity of

ϕ.

1. Introduction

Consider the class of operators on L2(R) consisting of sums and products of
operators of the form Dϕ ≡ FMϕF

−1 and Mψ, where F denotes the Fourier
transform

(Ff)(x) =
1√
2π

∫ ∞

−∞
e−ixtf(t)dt

and Mψ denotes multiplication by ψ. For various choices of ϕ and ψ, one can
obtain the Toeplitz, Hankel, and singular integral operators, as well as the con-
volution integral operators. The Fredholm theory of these objects has a long
history, including studies by Duducava [6] and Power [16, 17, 18, 19], for ϕ,ψ
both piecewise continuous. The more delicate problem of unitary equivalence has
been solved only in the cases of self-adjoint Toeplitz operators [20, 11], self-adjoint
singular integral operators [21, 15], and for certain classes of self-adjoint Hankel
operators [8, 9, 10]. Most recently, operators of the form DϕMψ with ϕ and ψ
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analytic are featured in [12], in which the operators are used to determine the
unitary automorphism group of the Fourier binest algebra.

This paper is the first in a series dealing with the class of unitary operators
of the form T ≡ DϕMu, for ϕ ∈ H∞(R) inner and |u| = 1 a.e. The present
article focuses specifically on the issue of absolute continuity, and in the process
answers the unitary equivalence question for the case in which ϕ is not a finite
multiplicity Blashcke product. The next two papers in the series address the issue
of unitary equivalence for the finite Blaschke product case. In each paper, ideas
from spectral multiplicity theory are used to obtain information concerning the
unitary equivalence classes of these objects, and also of the restrictions Tα,∞ of
T to the invariant subspaces L2(α,∞).

Specifically, let D denote the open unit disk in the complex plane, and ∂D
denote the unit circle. According to spectral theory, there is associated with each
unitary operator U acting on a separable Hilbert space H a spectral measure E
on ∂D such that

U =
∫
∂D
λdE(λ).

U is absolutely continuous (resp. singular) if all of the scalar spectral measures
〈E(·)x, y〉 are absolutely continuous (singular). In addition, there exist direct
sum decompositions H = Hac ⊕Hs and U = Uac ⊕Us of H and U such that Hac

and Hs are U reducing subspaces, with Uac ≡ U |Hac
and Us ≡ U |Hs

respectively
absolutely continuous and singular [3, 13].

Spectral multiplicity theory provides a similar, but somewhat more powerful,
formulation of these ideas. Specifically, it states that there is associated with U

a Borel measurable field of Hilbert spaces {Hλ : λ ∈ ∂D} and a finite positive
Borel measure ν on ∂D such that U is unitarily equivalent to multiplication by λ
on the direct integral Hilbert space

D =
∫
∂D
⊕Hλdν(λ).

The spectral multiplicity function n defined by n(λ) = dimHλ along with the
scalar spectral measure ν describe U in the sense that any unitary operator whose
scalar spectral measure is mutually absolutely continuous with ν and whose multi-
plicity function agrees with n except on a set of ν measure zero must be unitarily
equivalent to U . The properties of absolute continuity and singularity in this
framework are defined to reflect the corresponding properties of ν. Despite the
apparent differences between these definitions and those in the previous para-
graph, both sets of definitions describe the same subclasses of unitary operators.
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Section 2 of this note provides a brief introduction to Hardy spaces on the
half-plane, along with other relevant definitions and concepts. Sections 3 and 4
address the absolute continuity problem. In the former, operators T for which ϕ
has the form ϕ = eiαx, α > 0 are examined with the help of the minimal unitary
dilation notion of Sz.Nagy-Foiaş [23]. The final section presents an example of
an operator that is not absolutely continuous, demonstrating that a “slightly”
non-analytic ϕ can result in a non-trivial point spectrum.

I would like to thank Thomas Kriete for many valuable discussions during the
writing of this article. It was his examination of the isometric single Blaschke
factor case [14] that served as the motivation for the present study. I would also
like to thank the reviewer for a number of helpful suggestions.

2. PRELIMINARIES

Let Ω denote the upper half-plane, and let H2 denote the Hardy space on Ω,
which by passing to boundary values may be considered a subspace of L2(R). The
Paley-Wiener Theorem (see e.g. [22]) states that F maps eiαxH2 isometrically
onto L2(α,∞). One should note that if α < 0, then eiαxH2 contains H2. The
space H∞ consists of all bounded analytic functions on the upper half-plane, and
can be considered a subspace of L∞(R) in a manner similar to H2.

A function ϕ ∈ H∞ is said to be inner provided |ϕ| = 1 almost everywhere on
R. For such ϕ, the set ϕH2 ≡ {ϕf : f ∈ H2} is a closed subspace of H2. Inner
functions of the form

B(z) =
(
z − i

z + i

)m ∏
n

|z2
n + 1|
z2
n + 1

z − zn
z − zn

for m and n nonnegative integers and {zn} a sequence in Ω\{i} with∑
n

yn

1 + |zn|2
<∞, zn = xn + iyn

are called Blaschke products, and their multiplicity is defined to be the number
of factors if this number is finite, and infinite if not. In general we define the
multiplicity of an inner function to be the dimension of the subspace H2 	 ϕH2.
For Blaschke products these two definitions coincide. It can be shown that an
inner function ϕ has finite multiplicity if and only if it is a finite multiplicity (or
simply “finite”) Blaschke product, and in this case, the elements of H2	ϕH2 are
all rational functions.
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For ϕ ∈ L∞(R) we define the Toeplitz operator with symbol ϕ, denoted Tϕ, to
be the operator on H2 given by

Tϕf = PMϕf = P (ϕf),

where P denotes the orthogonal projection of L2(R) onto H2.
For α ≥ 0, let Sα be the unitary translation operator on L2(R) defined by

(Sαf)(x) = f(x− α)

and let Ŝα denote the isometric restriction to L2(0,∞) defined by

(Ŝαf)(x) = χ(α,∞)(x)f(x− α), (Ŝ∗αf)(x) = χ(0,∞)(x)f(x+ α).

When considering F as a unitary mapping on H2(R), the relations

FTeiαx = ŜαF

and
Ŝ∗αŜα = I, ŜαŜ

∗
α = Pα,∞

are useful. Here, Pα,∞ denotes the projection of L2(0,∞) onto L2(α,∞).
For T a contraction on a separable Hilbert space H, define the defect operators

DT and DT∗ , and defect spaces DT and DT∗ , by

DT = (I − T ∗T )
1
2 , DT∗ = (I − TT ∗)

1
2

and
DT = DT (H), DT∗ = DT∗(H),

where the bars denote closure in the norm topology of H. It is easily shown that
if T is isometric, then the defect operator DT∗ is the orthogonal projection of H
onto the closed subspace range(I − TT ∗).

For the remainder of this paper, we assume that T is the unitary operator on
L2(R) given by

T ≡ FMϕF
−1Mu,

where ϕ ∈ H∞ is inner and u ∈ L∞ is such that |u| = 1 almost everywhere. When
convenient, we will use Dϕ to denote the Fourier multiplier Dϕ = FMϕF

−1 so
that T may also be written T = DϕMu. Much of the analysis that follows benefits
from the rich collection, {L2(α,∞) : α ∈ R}, of T invariant subspaces of L2(R).
To see this invariance, note that the Paley-Wiener Theorem combined with the
relation

FMeiαx = SαF
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implies that F maps eiαxH2 isometrically onto L2(α,∞). From this, it follows
that

Dϕ(L2(α,∞))Mu = FMϕ(eiαxH2) = F (ϕeiαxH2) ⊆ F (eiαxH2) = L2(α,∞).

Since the present analysis involves a large number of subspaces of various forms,
some notational shortcuts are employed. For−∞ ≤ α < β ≤ ∞, and A a bounded
operator on a Hilbert space H, we will write Aα,β to denote the compression of A
to L2(α, β), when this compression exists. The lone exceptions to this convention
are that T̂ = T |L2(0,∞) and (as mentioned previously) Ŝα = Sα|L2(α,∞). PM

denotes the orthogonal projection of H onto the subspace M, and M⊥ refers
to the subspace H 	 M. In many of the examples that follow, M will be a
subspace of both L2 and H2, in which case M⊥ will always refer to H2 	M
as opposed to L2 	M. If A is a contraction, we will use Au, A0; Hu, H0; and
Pu, P0; to denote respectively the unitary and completely non-unitary parts of
A, the corresponding subspaces of H, and the projections onto these subspaces,
assuming that such objects exist for the particular operator in question.

The analysis here is simplified by the unitary equivalence of several of the
operators under consideration. In particular, for f in the L2-dense set L1(0,∞)∩
L2(α,∞), and α ∈ R,

S∗αPα,∞DϕMuPα,∞ = S∗αPα,∞

(
1
2π

∫ ∞

−∞
e−ixtϕ(t)

∫ ∞

α

eitsu(s)f(s)dsdt
)

= P0,∞S
∗
α

(
1
2π

∫ ∞

−∞
e−ixtϕ(t)

∫ ∞

α

eitsu(s)f(s)dsdt
)

= P0,∞

(
1
2π

∫ ∞

−∞
e−ixtϕ(t)

∫ ∞

α

ei(s−α)tu(s)f(s)dsdt
)

= P0,∞

(
1
2π

∫ ∞

−∞
e−ixtϕ(t)

∫ ∞

0

eitsu(s+α)f(s+α)dsdt
)

= P0,∞DϕMSα
∗uP0,∞S

∗
α,

so that for all f ∈ L2(α,∞),

(2.1) (DϕMu)α,∞ = Sα(DϕMSα
∗u)0,∞S∗α.

This unitary equivalence allows us to concentrate our isometric case efforts on the
L2(0,∞) restriction.

Finally, we assume throughout that ϕ is not a constant function, as this would
make T a constant multiple of a multiplication operator, a class whose spectral
multiplicity theory is well understood [1].
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3. ABSOLUTE CONTINUITY FOR ϕ = eiαx, α > 0.

Let H and K be Hilbert spaces, and suppose A ∈ B(H) and B ∈ B(K). We
write A = prB, if both H is a subspace of K and Ax = PHBx for all x ∈ H,
where PH denotes the orthogonal projection from K onto H. B is a dilation of A
if An = prBn for n = 1, 2, . . .. If in addition B is unitary and K satisfies

K =
∞∨

n=−∞
BnH,

then B is the minimal unitary dilation of A. (For a given operator A, there can
be many different dilations satisfying this definition. All of these turn out to be
isomorphic, however, and thus we speak of “the” minimal unitary dilation.)

Now, let ϕ = eiαx for some α > 0. Then

T = FMeiαxF−1Mu = SαFF
−1Mu = SαMu

so

T̂ ∗ = P0,∞T
∗|L2(0,∞) = P0,∞MuS

∗
α|L2(0,∞) =

= MuP0,∞S
∗
α|L2(0,∞) = Mu§α∗|L2(0,∞).

A direct calculation shows that for n = 1, 2, . . ., and f ∈ L2(0,∞),

(3.1) (T̂ ∗nf)(x) = χ(0,∞)(x)f(x+ nα)
n−1∏
k=0

u(x+ kα).

Lemma 3.1. The operator Tβ,∞ with ϕ as above is a unilateral shift of infinite
multiplicity for all β ∈ R.

Proof. By equation (2.1), we may restrict our attention to T̂ . This is isometric,
so by the Wold decomposition it suffices to show that T̂ ∗n → 0 strongly, and that
dim(L2(0,∞) 	 T̂L2(0,∞)) = ∞. The former follows easily from (3.1) and the
latter from the relation L2(0,∞)	 T̂L2(0,∞) = L2(0, α). �

Lemma 3.2. T is the minimal unitary dilation of T̂ .

Proof. For n = 1, 2, . . . we have

T̂n = (P0,∞T |L2(0,∞))(P0,∞T |L2(0,∞)) . . . . . . (P0,∞T |L2(0,∞))︸ ︷︷ ︸
n

= P0,∞T
n|L2(0,∞)
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so T̂nf = P0,∞T
nf for all f ∈ L2(0,∞), and T is a unitary dilation of T̂ . Also,

∞∨
n=−∞

TnL2(0,∞) =
∞∨

n=−∞
L2(nα,∞) = L2(R)

so T is minimal. �

Corollary 3.3. For ϕ = eiαx with α > 0, T is a bilateral shift of infinite multi-
plicity, and thus absolutely continuous.

4. ABSOLUTE CONTINUITY FOR THE REMAINING INNER

FUNCTIONS

The following lemma is fundamental:

Lemma 4.1. Let A be a contraction on H, and let L be a collection of A invariant
subspaces. For M∈ L, let AM = A|M. If

∨
{PNDA∗M : M,N ∈ L,N ⊆M} = H,

then Au, the unitary part of A, is absolutely continuous.

Proof. Let N ⊆M. We first show that

(4.2) PND
2
A∗M

PN ≤ D2
A∗N

,

from which it follows by a “folk theorem” (see e.g. [4]) that

(4.3) range(PNDA∗M
) ⊆ range(DA∗N

).

Toward this end, consider the matrix decomposition of AM with respect to the
direct sum M = M⊕ (M	N ). Since clearly N is invariant for AM, and AM
restricted to N is AN , this matrix has the form

AM =
[
AN X

0 Y

]
.
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It follows that

PND
2
A∗M

PN =
[
I 0
0 0

]([
I 0
0 I

]
−

[
AN X

0 Y

] [
A∗N 0
X∗ Y ∗

]) [
I 0
0 0

]
=

[
I 0
0 0

] [
I −ANA

∗
N −XX∗ 0

−Y X∗ I − Y Y ∗

] [
I 0
0 0

]
=

[
I −ANA

∗
N −XX∗ 0
0 0

]
=

[
D2
A∗N

−XX∗ 0
0 0

]
.

Thus, PND2
A∗M

PN = D2
A∗N

− XX∗ on N . Since both PND
2
A∗M

PN and D2
A∗N

are zero on N⊥, (4.2) holds, as does the range inclusion (4.3). Now, let f ∈
PNDA∗M

(H). Then by (4.3), f = DA∗N
h for some h, so

(1− |λ|2)‖(I − λA)−1f‖2 = (1− |λ|2)‖(I − λAN )−1DA∗N h‖
2 ≤ ‖h‖2.

It follows that if Pu is the projection of H onto Hu, the unitary subspace of A,
then

(1− |λ|2)‖(I − λAu)−1Puf‖
2 ≤ ‖h‖2, all λ ∈ D.

In particular, the quantity on the left is bounded for all λ ∈ D. By the spectral
theorem, therefore, Puf is in the absolutely continuous subspace of Hu. But the
vectors f as above span H, so {Puf : f as above} spans Hu and it follows that
the absolutely continuous subspace of Hu is all of Hu. �

The plan is to apply this result to the operators Tα,∞, and then use the absolute
continuity of (Tα,∞)u to show the property for T . So, let us consider the operator
T̂ with ϕ neither constant nor of the form eiαx, and let L be the collection of
invariant subspaces

L = {L2(α,∞) : α ≥ 0}.
We verify the stronger spanning condition∨

{PMDT̂∗ : M∈ L} = L2(0,∞).

Since T̂ is isometric, DT̂∗ = L2(0,∞)	 T̂L2(0,∞), which in this particular case
is simply F (H2 	 ϕH2), so we need only show that∨

{χ(α,∞)F (H2 	 ϕH2) : α ≥ 0} = L2(0,∞)

Toward this end, we prove the following:



ABSOLUTE CONTINUITY OF A CLASS OF UNITARY OPERATORS 9

Lemma 4.2. Let ϕ be inner and non-constant. Then all of the elements of F (H2	
ϕH2) vanish simultaneously on a set of positive measure if and only if ϕ = eiαx

for some α > 0.

Proof. The Paley-Wiener theorem renders one direction trivial. So, suppose
there exists a set ∆ ⊆ (0,∞) with positive Lebesgue measure (denoted |∆| > 0),
on which every f in F (H2 	 ϕH2) vanishes almost everywhere. Then, F (H2 	
ϕH2) is contained in L2((0,∞)\∆) and it follows that (F−1L2((0,∞)\∆))⊥ is
contained in ϕH2. Since F−1L2(∆) is orthogonal to F−1L2((0,∞)\∆), it must
also be contained in ϕH2, and equivalently L2(∆) ⊆ F (ϕH2). It follows that for
all α > 0,

ŜαL
2(∆) ⊆ ŜαF (ϕH2) = FTeiαx(ϕH2) ⊆ F (ϕH2),

and hence ∨
α∈(0,∞)

ŜαL
2(∆) ⊆ F (ϕH2).

Let γ = inf{t ∈ (0,∞) : |∆∩(0, t)| > 0}. One can show that the span on the left is
exactly L2(γ,∞) so that the latter subspace is contained in F (ϕH2) and eiγxH2

is contained in ϕH2. Now γ can’t be zero, since then H2 would be contained
in ϕH2 and ϕ would be constant, a case we have excluded. If γ > 0, then the
non-constant ϕ must divide eiγx. By standard function theory [7], ϕ = eiαx for
some α with 0 < α ≤ γ. �

Proposition 4.3. Let ϕ be an inner function which is neither a constant nor of
the form eiαx, and let T = DϕMu with |u| = 1 a.e. Then for all α ∈ R, the
isometric restriction Tα,∞ ≡ T |L2(α,∞) has absolutely continuous unitary part,
and shift part with multiplicity equal to the multiplicity of ϕ.

Proof. We first consider the absolute continuity of T̂u. By Lemma 4.1 and the
remarks following it, it suffices to show that∨

{χ(α,∞)F (H2 	 ϕH2) : α ≥ 0} = L2(0,∞).

Let M denote the span on the left and suppose g ∈ L2(0,∞) 	M. Then the
function h(t) defined by

h(t) = −
∫ t

∞
g(x)f(x)dx

is zero for all t ≥ 0 and all f ∈M. But h is absolutely continuous, so differentiat-
ing gives g(x)f(x) = 0 almost everywhere. Now, let E = {x : g(x) 6= 0}. Clearly,
f(x) = 0 almost everywhere on E for all f ∈ F (H2 	 ϕH2). By the previous
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lemma, |E| = 0, which implies that g = 0 almost everywhere, from which the ab-
solute continuity of T̂u follows. That the shift part of T̂ has the stated multiplicity
is clear. The result for the remaining Tα,∞ follows from equation (2.1). �

Theorem 4.4. Let T = DϕMu with ϕ and u as above. Then T is absolutely
continuous.

Proof. Fix α ∈ R and f 6= 0 ∈ L2(α,∞). Let E and Eα denote the spectral
measures for T and (Tα,∞)u respectively, and let (Pα)0 and (Pα)u denote the
projections onto the completely non-unitary and unitary subspaces of L2(α,∞)
with respect to the operator Tα,∞. For λ ∈ D, and θ ∈ [0, 2π], define the Poisson
kernel Pλ(θ) by

Pλ(θ) =
1− |λ|2

|1− λeiθ|2
.

By the spectral theorem and the definition of Tα,∞, we have for all λ ∈ D,∫
∂D
Pλ(θ)d〈E(θ)f, f〉 = (1− |λ|2)‖(I − λT )−1f‖2

= (1− |λ|2)‖(I − λTα,∞)−1f‖2

= (1− |λ|2)‖(I − λ(Tα,∞)u)−1(Pα)uf‖
2

+ (1− |λ|2)‖(I − λ(Tα,∞)0)−1(Pα)0f‖
2

=
∫
∂D
Pλ(θ)d〈Eα(θ)(Pα)uf, (Pα)uf〉

+ (1− |λ|2)‖(I − λ(Tα,∞)0)−1(Pα)0f‖
2
.(4.5)

Now, (Tα,∞)0 is a shift with multiplicity equal to the dimension of DT̂∗ , and hence
unitarily equivalent to the shift operator S : f(λ) → λf(λ) acting on the vector
valued Hardy space H2(DT̂∗). It follows that there exists a non-zero g ∈ H2(DT̂∗)
with

‖(I − λ(Tα,∞)0)−1(Pα)0f‖ = ‖(I − λS)−1g‖.

But, for w ∈ D,

((I − λS)−1g)(w) =
1

1− λw
g(w),
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so that

‖(I − λS)−1g‖2 =
∥∥∥∥ 1

1− λw
g(w)

∥∥∥∥2

=
∫
∂D

1

|1− λeiθ|2
‖g(eiθ)‖2 dθ

2π

=
1

1− |λ|2
∫
∂D
Pλ(θ)‖g(eiθ)‖

2 dθ

2π
,

and hence

‖(I − λ(Tα,∞)0)−1(Pα)0f‖
2

=
1

1− |λ|2
∫
∂D
Pλ(θ)‖g(eiθ)‖

2 dθ

2π
.

Combining this with (4.5) gives∫
∂D
Pλ(θ)d〈E(θ)f, f〉 =

∫
∂D
Pλ(θ)d〈Eα(θ)(Pα)uf, (Pα)uf〉

+
∫
∂D
Pλ(θ)‖g(eiθ)‖

2 dθ

2π
,

all λ ∈ D, from which it follows that

d〈E(θ)f, f〉 = d〈Eα(θ)(Pα)uf, (Pα)uf〉+ ‖g(eiθ)‖2 dθ
2π
.

By Proposition 4.3 then, d〈E(θ)f, f〉 is absolutely continuous. Since α ∈ R was
arbitrary and

∨
α∈R L

2(α,∞) = L2(R), the result follows. �

Corollary 4.5. Let T be as above and suppose ϕ has infinite multiplicity. Then T
is a bilateral shift of infinite multiplicity.

Proof. For a bilateral shift U of infinite multiplicity, the scalar spectral measure
is Lebesgue measure on the unit circle and the spectral multiplicity function is
infinite almost everywhere. Since the direct sum of two unitary operators has
scalar spectral measure and spectral multiplicity the sum of the corresponding
elements of the summands, the direct sum of an absolutely continuous unitary
and a bilateral shift of infinite multiplicity is a bilateral shift of infinite multiplicity.

Now, T is a unitary dilation of T̂ , so it must contain the minimal unitary
dilation U of T̂ . Since the minimal unitary dilation of a unilateral shift is a
bilateral shift of the same multiplicity, Proposition 4.3 implies that U is the direct
sum of an absolutely continuous unitary operator and a bilateral shift of infinite
multiplicity, which from the preceding paragraph is just a bilateral shift of infinite
multiplicity. Now, let K ≡

∨∞
n=−∞ TnL2(α,∞). Then K is reducing for T and by
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the definition of the minimal unitary dilation, T |K is U . Thus, T = V ⊕U , where V
is the restriction of T to L2(R)	K. By Theorem 4.4, T is absolutely continuous,
which together with the absolute continuity of U implies that V is absolutely
continuous as well. That is, T is the direct sum of an absolutely continuous
unitary and a bilateral shift of infinite multiplicity, and is thus a bilateral shift of
infinite multiplicity. �

5. A “COUNTEREXAMPLE”

The present example demonstrates that our conditions on the symbol functions
ϕ and u are “sharp” as far as absolute continuity is concerned. Specifically, there
exists a function ϕ, a quotient of two Blaschke factors, and a unimodular function
u, such that DϕMu is not absolutely continuous. I am grateful to J. Howland
and T. Kriete for bringing it to my attention.

For n ≥ 0, define the Hermite polynomials Hn and Hermite functions en by [2]

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

en(x) = Hn(x)e−
x2
2 .

Arguments from classical analysis [5] show that the en are eigenfunctions for the
Fourier transform satisfying

Fen = (−i)nen.
Let f = e0 + ie2, and g = e0 − ie2. Then

F−1f = F−1(e0 + ie2) = e0 − ie2 = g,

and similarly F−1g = f . Moreover, since the ei are real valued,

|f |2 = e0
2 + e2

2 = |g|2,

so that
|F−1f |2 = |g|2 = |f |2 = |F−1g|2

almost everywhere on R. If we let k = −
3
2 −

i
4

3
2 + i

4

, and u =
kg

f
, then u is unimodular,

and since f is not a constant multiple of g, u is not constant. Now, let

ϕ =
F−1f

kF−1g
.

Then |ϕ| = 1 almost everywhere, and we have

F−1f = ϕkF−1g = ϕF−1(uf) = MϕF
−1Muf
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so that f is an eigenvector of DϕMu, and thus the latter has point spectra. But,

ϕ =
F−1f

kF−1g
=

g

kf
=

e0 − ie2
k(e0 + ie2)

=
1− iH2

k(1 + iH2)
.

If for z0 ∈ Ω we let Bz0(z) denote the single Blaschke factor with zero z0, then
a direct calculation shows that this last quotient is the boundary value of the

complex function
Bα(z)
Bβ(z)

, where α is the upper half-plane square root of 1
2 −

i
4

and β = −α. Since this last expression is a quotient of single Blaschke factors, ϕ
is not inner, but is in many ways as close to being inner as any non-H∞ function
can be.
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