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Malware That Propagates
•  Virus = code that propagates (replicates)

across systems by arranging to have itself
eventually executed
– Generally infects by altering stored code

•  Worm = code that self-propagates/replicates
across systems by arranging to have itself
immediately executed
– Generally infects by altering running code
– No user intervention required



The Problem of Viruses
•   Virus = code that replicates

– Instances opportunistically create new addl. instances
– Goal of replication: install code on additional systems

•   Opportunistic = code will eventually execute
– Generally due to user action

•  Running an app, booting their system, opening an attachment

•   Separate notions for a virus: how it propagates vs.
what else it does when executed (payload)

•   General infection strategy: find some code
lying around, alter it to include the virus

•   Have been around for decades …
– … resulting arms race has heavily

influenced evolution of modern malware



Propagation
•   When virus runs, it looks for an opportunity to infect

additional systems
•   One approach: look for USB-attached thumb drive,

alter any executables it holds to include the virus

•   Or: when user sends email w/ attachment, virus
alters attachment to add a copy of itself
– Works for attachment types that include programmability
– E.g., Word documents (macros), PDFs (Javascript)
– Virus can also send out such email proactively, using

user’s address book + enticing subject (“I Love You”)

– Strategy: if drive later attached to another system &
altered executable runs, it locates and infects                     autorun is
executables on new system’s hard drive                                handy here!
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Payload
•   Besides propagating, what else can the virus do

when executing?
– Pretty much anything

•  Payload is decoupled from propagation
•  Only subject to permissions under which it runs

•   Examples:
–
–
–
–
–

Brag or exhort (pop up a message)
Trash files (just to be nasty)
Damage hardware (!)
Keylogging
Encrypt files

•  “Ransomware”
•   Possibly delayed until condition occurs

– “time bomb” / “logic bomb”



Detecting Viruses
•   Signature-based detection

– Look for bytes corresponding to injected virus code
– High utility due to replicating nature

•  If you capture a virus V on one system, by its nature the virus will
be trying to infect many other systems

•  Can protect those other systems by installing recognizer for V

•   Drove development of multi-billion $$ AV industry
(AV = “antivirus”)
– So many endemic viruses that detecting well-known

ones becomes a “checklist item” for security audits
•   Using signature-based detection also has de facto

utility for (glib) marketing
– Companies compete on number of signatures …

•  … rather than their quality (harder for customer to assess)





Virus Writer / AV Arms Race
•   If you are a virus writer and your beautiful new

creations don’t get very far because each time you
write one, the AV companies quickly push out a
signature for it ….
– …. What are you going to do?

•   Need to keep changing your viruses …
– … or at least changing their appearance!

•   Writing new viruses by hand takes a lot of effort
•   How can you mechanize the creation of new

instances of your viruses …
– … such that whenever your virus propagates, what it

injects as a copy of itself looks different?



Polymorphic Code
•   We’ve already seen technology for creating a

representation of some data that appears
completely unrelated to the original data:
encryption!

•   Idea: every time your virus propagates, it inserts a
newly encrypted copy of itself
– Clearly, encryption needs to vary

•  Either by using a different key each time
•  Or by including some random initial padding (like an IV)

– Note: weak (but simple/fast) crypto algorithm works fine
•  No need for truly strong encryption, just obfuscation

•   When injected code runs, it decrypts itself to obtain
the original functionality
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Arms Race: Polymorphic Code
•   Given polymorphism, how might we then detect

viruses?
•   Idea #1: use narrow sig. that targets decryptor

– Issues?
•  Less code to match against ⇒ more false positives
•  Virus writer spreads decryptor across existing code

•   Idea #2: execute (or statically analyze) suspect
code to see if it decrypts!
– Issues?

•  Legitimate “packers” perform similar operations (decompression)
•  How long do you let the new code execute?

–  If decryptor only acts after lengthy legit execution, difficult to spot

•   Virus-writer countermeasures?



Metamorphic Code
•   Idea: every time the virus propagates, generate
semantically different version of it!
– Different semantics only at immediate level of execution;

higher-level semantics remain same
•   How could you do this?
•   Include with the virus a code rewriter:

– Inspects its own code, generates random variant, e.g.:
•
•
•
•
•

Renumber registers
Change order of conditional code
Reorder operations not dependent on one another
Replace one low-level algorithm with another
Remove some do-nothing padding and replace with different do-
nothing padding

-- Can be very complex, legit code … if it’s never called or has no                     
important effect!



Polymorphic Code In Action

Hunting for Metamorphic, Szor & Ferrie, Symantec Corp., Virus Bulletin Conference, 2001
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Detecting Metamorphic Viruses?
•   Need to analyze execution behavior

–  Shift from syntax (appearance of instructions) to
semantics (effect of instructions)

•   Two stages: (1) AV company analyzes new virus to find
behaviorial signature, (2) AV software on end system
analyzes suspect code to test for match to signature

•   What countermeasures will the virus writer take?
–  Delay analysis by taking a long time to manifest behavior

•   Long time = await particular condition, or even simply clock time
–  Detect that execution occurs in an analyzed environment and if so

behave differently
•   E.g., test whether running inside a debugger, or in a Virtual Machine

•   Counter-countermeasure?
–  AV analysis looks for these tactics and skips over them

•   Note: attacker has edge as AV products supply an oracle



How Much Malware Is Out There?
•   A final consideration re polymorphism and

metamorphism: presence can lead to mis-counting
a single virus outbreak as instead reflecting 1000s
of seemingly different viruses
– Thus take care in interpreting vendor statistics on

malcode varieties
– (Also note: public perception that many varieties exist is
in the vendors’ own interest)
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AV-Test.org malware statistics

http://av-test.org
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Infection Cleanup
•  Once malware detected on a system, how do we get

rid of it?
•  May require restoring/repairing many files

–  This is part of what AV companies sell: per-specimen
disinfection procedures

•  What about if malware executed with adminstrator
privileges?
–  “nuke the entire site from orbit. It's the only way to be sure”

–  i.e., rebuild system from original media + data backups
•  If we have complete source code for system, we

could rebuild from that instead, right?

- Aliens



The Perils of Rebuilding From Source
• If we have complete source code for system,

we could rebuild from that instead, right?

• Suppose forensic analysis shows that virus
introduced a backdoor in /bin/login
executable
– (Note: this threat isn’t specific to viruses; applies

to any malware)

• Cleanup procedure: rebuild /bin/login from
source …
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XCorrect compiler
source code

Infected Compiler

Correct compiler
executable

Reflections on Trusting Trust
Turing-Award Lecture, Ken Thompson, 1983

And if the hardware has a back door …

Infected Compiler

Oops - infected compiler
recognizes when it’s
compiling its own source
and inserts the infection!

Infected Compiler

No amount of careful source-code
scrutiny can prevent this problem.

No problem: first step,
rebuild the compiler
so it’s uninfected

Correct compiler
source code
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Worms



Large-Scale Malware
•   Worm = code that self-propagates/replicates

across systems by arranging to have itself
immediately executed
– Generally infects by altering running code
– No user intervention required

•   Botnet = set of compromised machines (“bots”)
under a common command-and-control (C&C)
– Attacker might use a worm to get the bots, or other

techniques; orthogonal to bot’s use in botnet



The Problem of Worms
•   Virus = code that propagates (replicates) across

systems by arranging to be eventually executed
– Generally infects by altering stored code

•   Worm = code that self-propagates/replicates
across systems by arranging to have itself
immediately executed
– Generally infects by altering or initiating running code
– No user intervention required

•   Like with viruses, for worms we can separate out
propagation from payload

•   Propagation includes notions of targeting & exploit
– How does the worm find new prospective victims?
– How does worm get code to automatically run?



Studying Worms
•   Internet-scale events

–  Surprising dynamics / emergent behavior
–  Hard problem of attribution (who launched it)

•   Modeling propagation mathematically
•   Evolution / ecosystem

–  Shifting perspectives on nature of problem
–  Remanence

•   “Better” worms
•   Thinking about defenses

–  Including “white worms”
•   Mostly illustrated from a historical perspective …

–  Details/dates/names for the most part not important
•   Other than Morris Worm, Code Red, and Slammer
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The worm
dies off
globally!

Measurement
artifacts

Number of new hosts
probing 80/tcp as seen
at LBNL monitor of
130K Internet addresses



Modeling Worm Spread
•   Worm-spread often well described as infectious epidemic

–  Classic SI model: homogeneous random contacts
•   SI = Susceptible-Infectible

•   Model parameters:
–
–
–
–

N: population size
S(t): susceptible hosts at time t.
I(t): infected hosts at time t.
β: contact rate

•   How many population members each infected host communicates with per
unit time

•   Auxiliary parameters reflecting the relative proportion of
infected/susceptible hosts

–  s(t) = S(t)/N i(t) = I(t)/N s(t) + i(t) = 1

N = S(t) + I(t)
S(0) = I(0) = N/2





Fitting the Model to Code Red

Exponential
initial growth

Growth slows as
it becomes harder
to find new victims!



Life Just Before Slammer



Life Just After Slammer



Going Fast: Slammer

•   Slammer exploited connectionless UDP
service, rather than connection-oriented TCP

•   Entire worm fit in a single packet!
⇒ When scanning, worm could “fire and forget”
Stateless!

•   Worm infected 75,000+ hosts in 10 minutes
(despite broken random number generator).

•   At its peak, doubled every 8.5 seconds



The Usual Logistic Growth



Slammer’s Growth
What could have
caused growth to
deviate from the
model?

Hint: at this point the
worm is generating
55,000,000 scans/sec

Answer: the Internet ran
out of carrying capacity!
(Thus, β decreased.)
Access links used by
worm completely clogged.
Caused major collateral
damage.
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Stuxnet

•   Discovered July 2010.  (Released: Mar 2010?)
•   Multi-mode spreading:

– Initially spreads via USB (virus-like)
– Once inside a network, quickly spreads internally

using Windows RPC
•   Kill switch: programmed to die June 24, 2012

•   Targeted SCADA systems
– Used for industrial control systems, like

manufacturing, power plants
•   Symantec: infections geographically clustered

– Iran: 59%; Indonesia: 18%; India: 8%



Stuxnet, con’t

•   Used four Zero Days
– Unprecedented expense on the part of the author

•   “Rootkit” for hiding infection based on installing
Windows drivers with valid digital signatures
– Attacker stole private keys for certificates from two

companies in Taiwan
•   Payload: do nothing …

– … unless attached to particular models of frequency
converter drives operating at 807-1210Hz

– … like those made in Iran (and Finland) …
– … and used to operate centrifuges for producing

enriched Uranium for nuclear weapons



Stuxnet, con’t

•   Payload: do nothing …
– … unless attached to particular models of frequency

converter drives operating at 807-1210Hz
– … like those made in Iran (and Finland) …
– … and used to operate centrifuges for producing

enriched Uranium for nuclear weapons
•   For these, worm would slowly increase drive

frequency to 1410Hz …
– … enough to cause centrifuge to fly apart …
– … while sending out fake readings from control

system indicating everything was okay …
•   … and then drop it back to normal range





Worm Take-Aways
•   Potentially enormous reach/damage

⇒ Weapon
•
•
•
•

Hard to get right
Emergent behavior / surprising dynamics
Institutional antibodies
Remanence: worms stick around
– E.g. Nimda & Slammer still seen in 2011!

•   Propagation faster than human response
•   What about fighting a worm using a worm?

– “White worm” spreads to disinfect/patch
– Experience shows: likely not to behave predictably!
– Additional issues: legality, collateral damage, target worm

having already patched so white worm can’t access victim
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