
Viruses & Worms

Thanks to Prof. Vern Paxson for these
slides

Malware That Propagates
• Virus = code that propagates (replicates)

across systems by arranging to have itself
eventually executed
– Generally infects by altering stored code

• Worm = code that self-propagates/replicates
across systems by arranging to have itself
immediately executed
– Generally infects by altering running code
– No user intervention required

The Problem of Viruses
• Virus = code that replicates

– Instances opportunistically create new addl. instances
– Goal of replication: install code on additional systems

• Opportunistic = code will eventually execute
– Generally due to user action

• Running an app, booting their system, opening an attachment

• Separate notions for a virus: how it propagates vs.
what else it does when executed (payload)

• General infection strategy: find some code
lying around, alter it to include the virus

• Have been around for decades …
– … resulting arms race has heavily

influenced evolution of modern malware

Propagation
• When virus runs, it looks for an opportunity to infect

additional systems
• One approach: look for USB-attached thumb drive,

alter any executables it holds to include the virus

• Or: when user sends email w/ attachment, virus
alters attachment to add a copy of itself
– Works for attachment types that include programmability
– E.g., Word documents (macros), PDFs (Javascript)
– Virus can also send out such email proactively, using

user’s address book + enticing subject (“I Love You”)

– Strategy: if drive later attached to another system &
altered executable runs, it locates and infects autorun is
executables on new system’s hard drive handy here!

Virus

Virus

Original Program Instructions
Entry point

Entry point

1. Entry point

Original Program Instructions

3. JMP

Original Program Instructions

2. JMP

Original program
instructions can be:

• Application the
user runs

• Run-time library /
routines resident
in memory

• Disk blocks used
to boot OS

• Autorun file on
USB device

•…

Many variants are
possible, and of
course can combine
techniques

Payload
• Besides propagating, what else can the virus do

when executing?
– Pretty much anything

• Payload is decoupled from propagation
• Only subject to permissions under which it runs

• Examples:
–
–
–
–
–

Brag or exhort (pop up a message)
Trash files (just to be nasty)
Damage hardware (!)
Keylogging
Encrypt files

• “Ransomware”
• Possibly delayed until condition occurs

– “time bomb” / “logic bomb”

Detecting Viruses
• Signature-based detection

– Look for bytes corresponding to injected virus code
– High utility due to replicating nature

• If you capture a virus V on one system, by its nature the virus will
be trying to infect many other systems

• Can protect those other systems by installing recognizer for V

• Drove development of multi-billion $$ AV industry
(AV = “antivirus”)
– So many endemic viruses that detecting well-known

ones becomes a “checklist item” for security audits
• Using signature-based detection also has de facto

utility for (glib) marketing
– Companies compete on number of signatures …

• … rather than their quality (harder for customer to assess)

Virus Writer / AV Arms Race
• If you are a virus writer and your beautiful new

creations don’t get very far because each time you
write one, the AV companies quickly push out a
signature for it ….
– …. What are you going to do?

• Need to keep changing your viruses …
– … or at least changing their appearance!

• Writing new viruses by hand takes a lot of effort
• How can you mechanize the creation of new

instances of your viruses …
– … such that whenever your virus propagates, what it

injects as a copy of itself looks different?

Polymorphic Code
• We’ve already seen technology for creating a

representation of some data that appears
completely unrelated to the original data:
encryption!

• Idea: every time your virus propagates, it inserts a
newly encrypted copy of itself
– Clearly, encryption needs to vary

• Either by using a different key each time
• Or by including some random initial padding (like an IV)

– Note: weak (but simple/fast) crypto algorithm works fine
• No need for truly strong encryption, just obfuscation

• When injected code runs, it decrypts itself to obtain
the original functionality

Virus
D

ecryptor
D

ecryptor
Key

Key Main Virus Code

Original Program Instructions

Original Program Instructions

Encrypted Glob of Bits

Instead of this …

Virus has this
initial structure

When executed,
decryptor applies key
to decrypt the glob …

⇓
… and jumps to the
decrypted code once
stored in memory

Jmp

{

D
ecryptor

D
ecryptor

D
ecryptor

Key
Key

Key2

Encryptor
Main Virus Code

Jmp

uses an encryptor with
a new key to propagate

Different Encrypted Glob of Bits

⇓

Polymorphic Propagation

Encrypted Glob of Bits

⇓
Once running, virus

New virus instance
bears little resemblance
to original

{

Arms Race: Polymorphic Code
• Given polymorphism, how might we then detect

viruses?
• Idea #1: use narrow sig. that targets decryptor

– Issues?
• Less code to match against ⇒ more false positives
• Virus writer spreads decryptor across existing code

• Idea #2: execute (or statically analyze) suspect
code to see if it decrypts!
– Issues?

• Legitimate “packers” perform similar operations (decompression)
• How long do you let the new code execute?

– If decryptor only acts after lengthy legit execution, difficult to spot

• Virus-writer countermeasures?

Metamorphic Code
• Idea: every time the virus propagates, generate
semantically different version of it!
– Different semantics only at immediate level of execution;

higher-level semantics remain same
• How could you do this?
• Include with the virus a code rewriter:

– Inspects its own code, generates random variant, e.g.:
•
•
•
•
•

Renumber registers
Change order of conditional code
Reorder operations not dependent on one another
Replace one low-level algorithm with another
Remove some do-nothing padding and replace with different do-
nothing padding

-- Can be very complex, legit code … if it’s never called or has no
important effect!

Polymorphic Code In Action

Hunting for Metamorphic, Szor & Ferrie, Symantec Corp., Virus Bulletin Conference, 2001

Metamorphic Code In Action

Hunting for Metamorphic, Szor & Ferrie, Symantec Corp., Virus Bulletin Conference, 2001

Detecting Metamorphic Viruses?
• Need to analyze execution behavior

– Shift from syntax (appearance of instructions) to
semantics (effect of instructions)

• Two stages: (1) AV company analyzes new virus to find
behaviorial signature, (2) AV software on end system
analyzes suspect code to test for match to signature

• What countermeasures will the virus writer take?
– Delay analysis by taking a long time to manifest behavior

• Long time = await particular condition, or even simply clock time
– Detect that execution occurs in an analyzed environment and if so

behave differently
• E.g., test whether running inside a debugger, or in a Virtual Machine

• Counter-countermeasure?
– AV analysis looks for these tactics and skips over them

• Note: attacker has edge as AV products supply an oracle

How Much Malware Is Out There?
• A final consideration re polymorphism and

metamorphism: presence can lead to mis-counting
a single virus outbreak as instead reflecting 1000s
of seemingly different viruses
– Thus take care in interpreting vendor statistics on

malcode varieties
– (Also note: public perception that many varieties exist is
in the vendors’ own interest)

20

21

AV-Test.org malware statistics

http://av-test.org

22

AV-Test.org malware statistics

http://av-test.org

23

AV-Test.org malware statistics

http://av-test.org

Infection Cleanup
• Once malware detected on a system, how do we get

rid of it?
• May require restoring/repairing many files

– This is part of what AV companies sell: per-specimen
disinfection procedures

• What about if malware executed with adminstrator
privileges?
– “nuke the entire site from orbit. It's the only way to be sure”

– i.e., rebuild system from original media + data backups
• If we have complete source code for system, we

could rebuild from that instead, right?

- Aliens

The Perils of Rebuilding From Source
• If we have complete source code for system,

we could rebuild from that instead, right?

• Suppose forensic analysis shows that virus
introduced a backdoor in /bin/login
executable
– (Note: this threat isn’t specific to viruses; applies

to any malware)

• Cleanup procedure: rebuild /bin/login from
source …

Compiler

/bin/login
executable

/bin/login
source code

Regular compilation
process of building login
binary from source code

/bin/login
source code

Compiler

/bin/login
executable

Infected compiler
recognizes when it’s
compiling /bin/login
source and inserts extra
back door when seen

XCorrect compiler
source code

Infected Compiler

Correct compiler
executable

Reflections on Trusting Trust
Turing-Award Lecture, Ken Thompson, 1983

And if the hardware has a back door …

Infected Compiler

Oops - infected compiler
recognizes when it’s
compiling its own source
and inserts the infection!

Infected Compiler

No amount of careful source-code
scrutiny can prevent this problem.

No problem: first step,
rebuild the compiler
so it’s uninfected

Correct compiler
source code

28

29

30

31

32

33

34

35

36

37

38

39

40

Worms

Large-Scale Malware
• Worm = code that self-propagates/replicates

across systems by arranging to have itself
immediately executed
– Generally infects by altering running code
– No user intervention required

• Botnet = set of compromised machines (“bots”)
under a common command-and-control (C&C)
– Attacker might use a worm to get the bots, or other

techniques; orthogonal to bot’s use in botnet

The Problem of Worms
• Virus = code that propagates (replicates) across

systems by arranging to be eventually executed
– Generally infects by altering stored code

• Worm = code that self-propagates/replicates
across systems by arranging to have itself
immediately executed
– Generally infects by altering or initiating running code
– No user intervention required

• Like with viruses, for worms we can separate out
propagation from payload

• Propagation includes notions of targeting & exploit
– How does the worm find new prospective victims?
– How does worm get code to automatically run?

Studying Worms
• Internet-scale events

– Surprising dynamics / emergent behavior
– Hard problem of attribution (who launched it)

• Modeling propagation mathematically
• Evolution / ecosystem

– Shifting perspectives on nature of problem
– Remanence

• “Better” worms
• Thinking about defenses

– Including “white worms”
• Mostly illustrated from a historical perspective …

– Details/dates/names for the most part not important
• Other than Morris Worm, Code Red, and Slammer

46

47

48

49

The worm
dies off
globally!

Measurement
artifacts

Number of new hosts
probing 80/tcp as seen
at LBNL monitor of
130K Internet addresses

Modeling Worm Spread
• Worm-spread often well described as infectious epidemic

– Classic SI model: homogeneous random contacts
• SI = Susceptible-Infectible

• Model parameters:
–
–
–
–

N: population size
S(t): susceptible hosts at time t.
I(t): infected hosts at time t.
β: contact rate

• How many population members each infected host communicates with per
unit time

• Auxiliary parameters reflecting the relative proportion of
infected/susceptible hosts

– s(t) = S(t)/N i(t) = I(t)/N s(t) + i(t) = 1

N = S(t) + I(t)
S(0) = I(0) = N/2

Fitting the Model to Code Red

Exponential
initial growth

Growth slows as
it becomes harder
to find new victims!

Life Just Before Slammer

Life Just After Slammer

Going Fast: Slammer

• Slammer exploited connectionless UDP
service, rather than connection-oriented TCP

• Entire worm fit in a single packet!
⇒ When scanning, worm could “fire and forget”
Stateless!

• Worm infected 75,000+ hosts in 10 minutes
(despite broken random number generator).

• At its peak, doubled every 8.5 seconds

The Usual Logistic Growth

Slammer’s Growth
What could have
caused growth to
deviate from the
model?

Hint: at this point the
worm is generating
55,000,000 scans/sec

Answer: the Internet ran
out of carrying capacity!
(Thus, β decreased.)
Access links used by
worm completely clogged.
Caused major collateral
damage.

59

60

Stuxnet

• Discovered July 2010. (Released: Mar 2010?)
• Multi-mode spreading:

– Initially spreads via USB (virus-like)
– Once inside a network, quickly spreads internally

using Windows RPC
• Kill switch: programmed to die June 24, 2012

• Targeted SCADA systems
– Used for industrial control systems, like

manufacturing, power plants
• Symantec: infections geographically clustered

– Iran: 59%; Indonesia: 18%; India: 8%

Stuxnet, con’t

• Used four Zero Days
– Unprecedented expense on the part of the author

• “Rootkit” for hiding infection based on installing
Windows drivers with valid digital signatures
– Attacker stole private keys for certificates from two

companies in Taiwan
• Payload: do nothing …

– … unless attached to particular models of frequency
converter drives operating at 807-1210Hz

– … like those made in Iran (and Finland) …
– … and used to operate centrifuges for producing

enriched Uranium for nuclear weapons

Stuxnet, con’t

• Payload: do nothing …
– … unless attached to particular models of frequency

converter drives operating at 807-1210Hz
– … like those made in Iran (and Finland) …
– … and used to operate centrifuges for producing

enriched Uranium for nuclear weapons
• For these, worm would slowly increase drive

frequency to 1410Hz …
– … enough to cause centrifuge to fly apart …
– … while sending out fake readings from control

system indicating everything was okay …
• … and then drop it back to normal range

Worm Take-Aways
• Potentially enormous reach/damage

⇒ Weapon
•
•
•
•

Hard to get right
Emergent behavior / surprising dynamics
Institutional antibodies
Remanence: worms stick around
– E.g. Nimda & Slammer still seen in 2011!

• Propagation faster than human response
• What about fighting a worm using a worm?

– “White worm” spreads to disinfect/patch
– Experience shows: likely not to behave predictably!
– Additional issues: legality, collateral damage, target worm

having already patched so white worm can’t access victim

66

67

