
Fall 2014 CS 334: Computer Security
1

Smashing The Stack

A detailed look at buffer overflows as
described in

Smashing the Stack for Fun and Profit
by Aleph One

Fall 2014 CS 334: Computer Security

Process Memory Organization

• Text
– Fixed by program
– Includes code and read-only data

• Since read-only, attempts to write to this typically cause
seg fault.

• Data
– Static variables (both initialized and uninitialized)

• Stack
– Usual LIFO data structure
– Used because well suited for procedure calls
– Used for dynamic allocation of local variables, passing of

parameters, returning values from functions

2

Fall 2014 CS 334: Computer Security

Process Memory Regions

3

Fall 2014 CS 334: Computer Security

Stack Region

• Stack is a contiguous block of memory containing
data
– Size dynamically adjusted by OS kernel at runtime

• Stack pointer (SP) register: points to top of stack
– Bottom of stack at fixed address

• Stack Frame
– Parameters to a function
– Local variables of function
– Data necessary to recover previous stack frame

• Including value of instruction pointer (IP) at time of
function call

– PUSHed onto stack on function call, POPped on return

4

Fall 2014 CS 334: Computer Security

Stack Region

• Assumptions
– Stack grows down (toward lower addresses)
– SP points to last address on stack (as opposed to pointing

to next free available address)

• Frame Pointer (FP) a.k.a. local base pointer (LP)
– Points to fixed location within frame
– Local variables and parameters referenced via FP because

their distance from FP do not change with PUSHes and
POPs

• Actual parameters PUSHed before new frame creation, so
have positive offsets, local variables after, so negative offsets

– On Intel CPUs, the EBP (32-bit BP) register is used

5

Fall 2014 CS 334: Computer Security

On Procedure Call…

• Procedure prolog (start of call)
– Save previous FP (to be restored at proc. exit)
– Copy SP into FP to create new FP
– Advance SP to reserve space for local variables

• Procedure epilogue (end of procedure)
– Stack is cleaned up and restored to previous state

• Often special instructions to handle these
– Intel: ENTER and LEAVE
– Motorola: LINK and UNLINK

6

Fall 2014 CS 334: Computer Security

Example

7

Fall 2012 CS 334: Computer Security
8

500

500esp

545ebp

Fall 2012 CS 334: Computer Security
9

500

496esp

545ebp

pushl $3

c

Fall 2012 CS 334: Computer Security
10

500

492esp

545ebp

pushl $3

b

c

pushl $2

Fall 2012 CS 334: Computer Security
11

500

488esp

545ebp

pushl $3

b

c

pushl $2

pushl $1

a

Fall 2012 CS 334: Computer Security
12

500

484esp

545ebp

pushl $3

b

c

pushl $2

pushl $1

a

call function

ret

Fall 2012 CS 334: Computer Security
13

500

482esp

545ebp

pushl $3

b

c

pushl $2

pushl $1

a

call function

ret

pushl %ebp

sfp:545

Fall 2012 CS 334: Computer Security
14

500

482esp

482ebp

pushl $3

b

c

pushl $2

pushl $1

a

call function

ret

pushl %ebp

sfp:545

movl %esp,%ebp

Fall 2012 CS 334: Computer Security
15

500

462esp

482ebp

pushl $3

b

c

pushl $2

pushl $1

a

call function

ret

pushl %ebp

sfp:545

movl %esp,%ebp

subl $20,%esp
buffer2

buffer2

buffer2

buffer1

buffer1

Fall 2014 CS 334: Computer Security

Another Example

16

Fall 2012 CS 334: Computer Security
17

500

466esp

482ebp

Note that code copies a string
without using a bounds check
(programmer used strcpy()
instead of strncpy()). Thus
the call to function() causes
the buffer to be overwritten,
in this case with 0x41414141,
the ASCII code for ‘A’

*str

ret

sfp:545

buffer

buffer

buffer

buffer

Fall 2012 CS 334: Computer Security
18

500

226esp

482ebpLet’s assume now
that buffer is a bit
bigger than 20
bytes. Say, e.g.,
256 bytes.

*str

ret

sfp:545

buffer

buffer

buffer

buffer

Let’s Get Creative…

buffer

buffer

buffer
�
�
�256 bytes

Fall 2012 CS 334: Computer Security
19

500

226esp

482ebpLet’s assume now
that buffer is a bit
bigger than 20
bytes. Say, e.g.,
256 bytes. If we
know assembly code,
we can feed code in
as a string, and
overwrite the return
address to point to
this.

*str

ret

my code

my code

my code

my code

my code

Let’s Get Creative…

my code

my code

my code
�
�
�

Fall 2012 CS 334: Computer Security
20

500

226esp

482ebpWe don’t even have
to know the exact
address of the start
of the buffer.

*str

ret

my code

no op

no op

my code

my code

Let’s Get Creative…

my code

no op

no op
�
�
�

Fall 2012 CS 334: Computer Security
21

500

462esp

482ebp

b

c

ret

canary

sfp:545

buffer2

buffer2

buffer2

buffer1

buffer1

StackGuard

Fall 2012 CS 334: Computer Security
22

