Smashing The Stack

A detailed look at buffer overflows as
described in

Smashing the Stack for Fun and Profit
by Aleph One

Fall 2014 CS 334: Computer Security

Process Memory Organization

e Jext

— Fixed by program
— Includes code and read-only data

e Since read-only, attempts to write to this typically cause
seg fault.

e Data
— Static variables (both initialized and uninitialized)

e Stack

— Usual LIFO data structure
— Used because well suited for procedure calls

— Used for dynamic allocation of local variables, passing of
parameters, returning values from functions

Fall 2014 CS 334: Computer Security

Fall 2014

Process Memory Regions

f e e e e \ lower
| memory
Text | addresses
|
__________________ |
(Initialized) |
Data |
(Uninitialized) |
__________________ |
|
Stack | higher
| memory
\————————————————— / addresses

CS 334: Computer Security

Stack Region

e Stack is a contiguous block of memory containing
data

— Size dynamically adjusted by OS kernel at runtime

e Stack pointer (SP) register: points to top of stack
- Bottom of stack at fixed address

e Stack Frame
— Parameters to a function
— Local variables of function

— Data necessary to recover previous stack frame

e Including value of instruction pointer (IP) at time of
function call

— PUSHed onto stack on function call, POPped on return

Fall 2014 CS 334: Computer Security

Stack Region

e Assumptions

— Stack grows down (toward lower addresses)
— SP points to last address on stack (as opposed to pointing

to next free available address)
e Frame Pointer (FP) a.k.a. local base pointer (LP)
— Points to fixed location within frame

— Local variables and parameters referenced via FP because
their distance from FP do not change with PUSHes and
POPs

e Actual parameters PUSHed before new frame creation, so
have positive offsets, local variables after, so negative offsets

— On Intel CPUs, the EBP (32-bit BP) register is used

Fall 2014 CS 334: Computer Security

On Procedure Call...

e Procedure prolog (start of call)

— Save previous FP (to be restored at proc. exit)
— Copy SP into FP to create new FP
— Advance SP to reserve space for local variables

e Procedure epilogue (end of procedure)
— Stack is cleaned up and restored to previous state

e Often special instructions to handle these
— Intel: ENTER and LEAVE
— Motorola: LINK and UNLINK

Fall 2014 CS 334: Computer Security

Example

exanmplel.c:

vold function(int a, int b, int c¢) {
char bufferl[5];
char buffer2[10];

}

vold main () {
function (1, 2, 3);

Fall 2014 CS 334: Computer Security

Fall 2012

500

CS 334: Computer Security

esp

ebp

500

545

pushl $3 esp

ebp

500

Fall 2012 CS 334: Computer Security v

496

545

pushl $3 esp
pushl $2

ebp

500

Fall 2012 CS 334: Computer Security v

492

545

10

pushl $3
pushl $2
pushl $1

Fall 2012

o)}

500

CS 334: Computer Security

esp

ebp

488

545

11

pushl $3
pushl $2
pushl $1

call function

Fall 2012

500

ret

o)}

CS 334: Computer Security

esp

ebp

484

545

12

pushl $3
pushl $2
pushl $1

call function

pushl %ebp

Fall 2012 CS 334: Computer Security

pushl $3
pushl $2
pushl $1

call function

pushl %ebp

movl %esp, %ebp

Fall 2012 CS 334: Computer Security

pushl $3
pushl $2
pushl $1

call function

pushl %ebp

movl 3%esp, %3ebp buffer?
SU.bl $20 ’ %esp

buffer2
buffer2
bufferl
bufferl
sfp:545

ret

a

Fall 2012 CS 334: Computer Security

Another Example

exanmple2.c

volid function(char *str) {
char buffer([1l6];

strcpy (buffer, str) ;
}

void main () {
char large_string[256];
int 1i;

for(i = 0; 1 < 255; i++)
large_string([i] = "A’;

function(large_string);

Fall 2014 CS 334: Computer Security

Note that code copies a string
without using a bounds check
(programmer used strcpy()
instead of strncpy()). Thus
the call to function() causes
the buffer to be overwritten,
in this case with 0x41414141,
the ASCII code for ‘A’

buffer
buffer
buffer
buffer
sfp:545
ret

*str

Fall 2012 CS 334: Computer Security

Let’'s Get Creative...

Let’s assume now

that buffer is a bit buffer
bigger than 20
bytes. Say, e.g., puffer
256 bytes. buffer

256 bytes __~ °

buffer
buffer
buffer
buffer
sfp:545
ret

*str

Fall 2012 CS 334: Computer Security

Let’'s Get Creative...

Let’s assume now
that buffer is a bit
bigger than 20
bytes. Say, e.g.,
256 bytes. If we
know assembly code,
we can feed code in
as a string, and
overwrite the return
address to point to
this.

Fall 2012 CS 334: Computer Security

Let’'s Get Creative...

esp 226
We don’t even have ebp 482
to know the exact no op
address of the start
of the buffer. 1o op
no op
no op
my code
my code
my code
my code
ret
*str
500
Fall 2012 CS 334: Computer Security

20

StackGuard

buffer2
buffer2
buffer2
bufferl
bufferl
---~.--~*‘ sfp:545
canary
ret

b

C

Fall 2012 CS 334: Computer Security

int £ (char ** argv)
{
int pipa; // useless variable
char *p;
char a[30];
p=a;
printf ("p=%x\t ——- before 1lst strcpy\n",p);
strcpy(p,argv[l]); // <== vulnerable strcpy()
printf ("p=%x\t -- after 1lst strcpy\n",p);

strncpy(p,argv[2],16);
printf("After second strcpy ;)\n");

}

main (int argc, char ** argv) {
f(argv);
execl("back to_vul","",0); //<-— The exec that fails
printf("End of program\n");

}

Fall 2012 CS 334: Computer Security

22

