
Fall 2012 CS 334: Computer Security
1

Pseudorandom Number Generation

Thanks once again to A. Joseph, D.
Tygar, U. Vazirani, and D. Wagner at the

University of California, Berkeley

Fall 2012 CS 334: Computer Security

What Can Go Wrong?

• An example:

• This generates a 16 byte (128 bit) key

2

Fall 2012 CS 334: Computer Security

A Refresher

• The function prototypes

• Each call to rand() returns pseudorandom
number with values in range 0 to RAND_MAX,
calculated as deterministic function of the seed.

• srand(s) sets the seed to s
• time(NULL) returns current time, seconds since

Jan 1, 1970.

3

Fall 2012 CS 334: Computer Security

Possible Implementations

4

Fall 2012 CS 334: Computer Security

A Problem: Key is easily guessed

• Seed is highly predictable
– If Alice generates new session key at start of each

session, then anyone who eavesdrops on session can
determine (within small range) the time of day on
Alice’s machine.

– Even if only narrow time to within one year, there are
only 3600 x 24 x 365 = 31,536,000 ≈ 225 keys.
Modern machines can try all within minutes

• Algorithm used by rand() is publicly known
• If you can guess seed and know the algorithm,

you have the key

5

Fall 2012 CS 334: Computer Security

Another Problem: Output is non-
random

• In fact, it’s highly non-random
– E.g., low bit of every successive output of rand()

alternates (0,1,0,1,0,1,…). (Why?)
• Thus key space has been reduced from 2128 to 2113.

(Why?)
– Each output of rand() depends only on previous

output of rand()
• Let N0, N1, N2,… be sequence of next values during

successive calls to rand(). On 32-bit machine we have
Ni+1 = 1103515245 x Ni + 12345

• Let Xi be output of ith call to rand(). Then
Xi = Ni (mod 215).

• Thus xi+1 = (1103515245 x Xi + 12345) mod 215

6

Fall 2012 CS 334: Computer Security

Another Problem: Output is non-
random

• Since each output of rand() depends only on
previous output of rand(), guessing first value of
rand gives you the key.
– Keyspace is now reduced to 215.
– Left as exercise: first byte of key is sufficient to derive

all other bytes of key, so key space is really 28.

• Bottom line: This implementation of rand() is
totally insecure for cryptographic purposes, no
matter how seed is chosen.

• Fact: On some platforms this is really how rand()
is implemented.

7

Fall 2012 CS 334: Computer Security

Recent Fun

 In 1995, it was discovered that Netscape
browsers generated SSL session keys using the
time and process ID as seed. This was
guessable, so all SSL sessions were breakable
in minutes. In fact, Netscape web servers
generated their long-term RSA keypair in the
same way, which was even worse.

8

Fall 2012 CS 334: Computer Security

Recent Fun

 Soon after the Netscape flaw was discovered,
someone noticed that the random number
generator in Kerberos was similarly flawed and
keys were guessable in seconds. In fact, it had
been flawed for years, and no one had noticed
until then. The code contained some functions
tha t p rov ide secu re random number
generation, but they inadvertently hadn’t been
used due to a breakdown in the revision control
process.

9

Fall 2012 CS 334: Computer Security

Recent Fun

 Four years later, someone found a different flaw
in the (supposedly fixed) Kerberos random
generator: there was a misplaced memset()
call that was intended to zero out the seed
after it was used, but actually zeroed out the
seed before it was used, ensuring that an all-
zeros seed would be used to generate Kerberos
keys.

10

Fall 2012 CS 334: Computer Security

Recent Fun

 Also in 1995, the XWindows ``magic cookie''
authentication method was discovered to have
a serious flaw in how it generated magic
cookies: it used rand() exactly as shown in the
code snippet at the beginning of this lecture,
and consequently there were only 28 possible
magic cookies. It only took a fraction of a
second to try them all and gain unauthorized
access to someone else's X display.

11

Fall 2012 CS 334: Computer Security

Recent Fun

 Around the same time, someone discovered
that NFS (Network Filesystem) filehandles were
predictable in Sun's NFS implementation. Sun
used the time of day and process ID to seed a
random number generator, and the filehandle
was calculated from this seed. Also, in the NFS
protocol, anyone who knows a valid filehandle
can bypass the authentication protocol. This
meant that anyone could defeat Sun's NFS
security simply by guessing the seed and trying
all corresponding filehandles.

12

Fall 2012 CS 334: Computer Security

Recent Fun

 Similar flaws have been found in DNS resolvers,
which would allow an attacker to send spoofed
DNS responses and have them accepted by
vulnerable DNS clients.

13

Fall 2012 CS 334: Computer Security

Recent Fun

 Majordomo used a bad random number
generator when send ing subscr ip t ion
confirmation messages, which would allow an
attacker to subscribe some poor victim to
thousands of mai l ing l i s ts and forge
confirmations that appear to come from the
victim.

14

Fall 2012 CS 334: Computer Security

Recent Fun

 At one point, someone noticed that PGP had
been using the return value from read() to
seed its pseudorandom number generator,
rather than the contents of the buffer written
by read(). Since read() always returned 1 (the
number of bytes read), this meant that the
seed was a stream of 1s, so session keys were
predictable.

15

Fall 2012 CS 334: Computer Security

Recent Fun

 More recently, a fun example came to light: one online
poker site used an insecure pseudorandom number
generator to shuffle the deck of cards. A player could see
the cards in their own hands, derive some partial
information about a few of the outputs from this
pseudorandom number generator, and infer the seed
used to shuffle the deck. This lets a smart player infer
what cards everyone else holds, which obviously allows
one to rake in the cash at the poker table. Oops.
Fortunately, the folks who discovered the flaw notified
the web site and wrote a paper rather than exploiting it
to cheat others.

16

Fall 2012 CS 334: Computer Security

Generating Pseudorandom Numbers

• True random number generators (TRNG):
generates bits that are distributed uniformly at
random, so that all outputs are equally likely,
and with no patterns, correlations, etc.

• Cryptographically secure pseudorandom
number generator (CS-PRNG). A CS-PRNG
generates a sequence of bits that appear, as far
as anyone can tell, to be indistinguishable from
true random bits. CS-PRNGs use cryptographic
techniques to achieve this task.

17

Fall 2012 CS 334: Computer Security

Typically Two Step Process

• Generate a seed.
– Typically use a TRNG to generate a short seed that is

truly random. The seed only needs to be long enough
to prevent someone from guessing it.

• E.g., the seed might be 128 bits. The seed plays a role
similar to that of a cryptographic key.

– Using a TRNG ensures that the seed will be
unpredictable by any attacker.

18

Fall 2012 CS 334: Computer Security

Typically Two Step Process

• Generate pseudorandom output, using this
seed.
– CS-PRNG is used to stretch seed to a long

pseudorandom output.
• Modern cryptographic CS-PRNGs allow generation of

essentially unlimited amount of output (billions of bits
are no problem).

• Using a CS-PRNG ensures that the pseudorandom bits
thus generated have no discernable patterns.

• The cryptographic properties of the CS-PRNG
ensure that using pseudorandom bits instead of
true-random bits makes no (detectable)
difference.

19

Fall 2012 CS 334: Computer Security

So, need to know:

• How to build a CS-PRNG

• How to build a TRNG

20

Fall 2012 CS 334: Computer Security

Cryptographyically Secure PRN
Generation

• Is this even possible?
– 128 bits amplified to billions?
– It’s possible, especially with help of good cipher

• One possibility
– Think of seed as cryptographic key
– Pick some symmetric key cipher (e.g., AES)
– Encrypt fixed message using key and cipher

• For many ciphers, ciphertext generated is
indistinguishable from random bits

21

Fall 2012 CS 334: Computer Security

Cryptographyically Secure PRN
Generation

• Ex. Generate n bits from 128-bit seed k by
AES-CBC(k, 0n)
– Proven a secure CS=PRNG if AES is a secure block

cipher
• Note that any IV will do here for CBC mode

– Also efficient: need only one call to AES per 128 bits
of output generated

• Standard AES implementations can generate output at
rates in excess of 50 MB/sec on current desktop
machines

22

Fall 2012 CS 334: Computer Security

Formalizing “Secure PRNG”

• Suppose PRNG that expands 128 bits to
1,000,000
– PRNG is deterministic function

G:{0,1}128 -> {0,1}1,000,000 that maps seed s to
output G(s)

• Let K denote random variable distributed
uniformly on {0,1}128

• Let U denote random variable distributed
uniformly on {0,1}1,000,000

• Roughly: G is secure if the output G(K) is
indistinguishable from U
– E.g., no attacker A can tell whether a sequence of

1,000,000 bits is generated by G or U.

23

Fall 2012 CS 334: Computer Security

Formalizing “Secure PRNG”

• More precisely: an attacker A is an algorithm
that takes a sequence of one million bits as
inputs, and outputs a guess as to how those bits
computed.

• The advantage of the attacker A is given by

• G is CS-PRNG is there is no feasible attacker A
that has non-negligible advantage at breaking G

• Really no more to this: any good crypto library
will provide implementation of CS-PRNG

24

€

Adv A = Pr A(G(K)) ="pseudorandom"[] −Pr A(U) ="pseudorandom"[]

Fall 2012 CS 334: Computer Security

True Random Number Generation

• Building a TRNG is more challenging.
– On some platforms, CPU provides built-in hardware

capability to generate truly random bits using an
appropriate random physical process.

– Unfortunately most platforms do not have this

• Another possibility: hardware peripheral that
acts as a dedicated TRNG, against using truly
random physical processes.
– Cost a few hundred dollars, so for high-value servers,

a reasonable solution.
– For many systems, including desktop machines, this

is not viable.

25

Fall 2012 CS 334: Computer Security

So what do we do if there is no
perfect source of physically random

bits?

26

Fall 2012 CS 334: Computer Security

In that case we’re hosed. You can’t
generate randomness out of nothing.

Anything that Alice can compute with a
deterministic algorithm, the attacker can

compute, too.

27

Fall 2012 CS 334: Computer Security

However…

• Often have some sources of randomness,
though these are typically imperfect.
– E.g, the source might generate values that are

somewhat unpredictable, but are not uniformly
distributed.

– Or, some of the bits may be predictable by adversary.
– Some sources may be slightly unreliable: they have

some probability of failure, where a failed source
emits completely predictable outputs (e.g., all zeros).

28

Fall 2012 CS 334: Computer Security

Examples

• A high-speed clock.
– Some machines have clock with nanosecond

precision. If an adversary can only predict the time
on your machine to within a microsecond (because of
clock skew), then the low 10 bits are unpredictable.

• A soundcard.
– Thermal noise will cause some randomness in

samples from a microphone input with nothing
plugged in.

• These samples not uniformly distributed (e.g., they may
contain 60Hz hum from line noise), but they are not
totally predictable, either.

•

29

Fall 2012 CS 334: Computer Security

Examples
• Keyboard input.

– PGP asks user to type keys randomly during key
generation, and uses these as well as the time
between each pair of key presses as a randomness
source.

• This is imperfect, as not all keys are equally likely (e.g.,
uppercase letters less likely than lowercase letters).

• Disk timings.
– Seek latencies on disks vary in a random manner, due

to air turbulence inside the disk.
• The random variability is very slight, and disk access

times are highly correlated, but there is some empirical
evidence that it may be possible to extract on the order
of a random bit per second.

30

Fall 2012 CS 334: Computer Security

How Do We Use These?

• One source on its own is probably insufficient.
– Clock might contribute 10 bits of randomness,

soundcard maybe 30 bits, keyboard maybe 30 bits,
and disk timings maybe 20 bits (to make up some
numbers).

• In total, this provides 90 bits of randomness, assuming
the sources are independent, which ought to be more
than enough in the aggregate.

• So, combine data, perhaps by concatenation
– This is enough to ensure that adversary cannot guess

exact value of concatenation
• But concatenation will not be uniformly distributed. In

general, entropy might be spread out among values in
strange and unpredictable ways.

31

Fall 2012 CS 334: Computer Security

Standard Solution

• Use a cryptographic hash function, such as SHA3.
– Seem to have the property that they do a good job of

extracting uniformly-distributed randomness from
imperfect random sources.

• Ex. Suppose that x is a value from an imperfect source, or
concatenation from multiple sources. Suppose also it is
impossible for adversary to predict entire value x, except
with negligible success probability (say, with probability
1/2160). Then SHA3(x) is a 160-bit value whose distribution
is (we think) approximately the uniform distribution.

– Generally, if it is impossible to predict exact value of x
except with probability 1/2n, and if SHA3 is secure, then
truncating SHA3(x) to n bits should provide an n-bit value
that is uniformly distributed.

32

Fall 2012 CS 334: Computer Security

In Practice

• Built exactly as described:
– Identify as many sources of randomness as you can
– Collect samples from each source
– Concatenate sampled values
– Hash them (used to be with SHA1, no longer)
– Truncate to appropriate length

• Result is a short true-random value that can be
used as a seed for a CS-PRNG

33

Fall 2012 CS 334: Computer Security

Caution

• Some bad sources
– IP addresses: adversary will likely know this
– Content of network packets: assume an adversary can

see these
• Network packet timings bad too, since adversary may be

able to predict these depending on precision of timer
– Process IDs

• Process IDs for many servers and daemons are easily
predictable, since boot process is deterministic and thus
anything started at boot time is likely to received the same
pid each time the machine is booted. Assume the
adversary knows our OS, so for many processes the pid
doesn't contribute any useful randomness.

34

Fall 2012 CS 334: Computer Security

In General

• Want values that will be random and
unpredictable even to an adversary.

• Also, because cost of RNG failure is so high, we
are usually very conservative when we analyze
potential randomness sources, and we evaluate
them according to the assumptions that are
most favorable to the attacker (among all
scenarios that are remotely plausible).

35

