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Pseudorandom Number Generation
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Tygar, U. Vazirani, and D. Wagner at the 
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What Can Go Wrong?

• An example:

• This generates a 16 byte (128 bit) key
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A Refresher

• The function prototypes

• Each call to rand() returns pseudorandom 
number with values in range 0 to RAND_MAX, 
calculated as deterministic function of the seed.

• srand(s) sets the seed to s
• time(NULL) returns current time, seconds since 

Jan 1, 1970.
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Possible Implementations
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A Problem: Key is easily guessed

• Seed is highly predictable
– If Alice generates new session key at start of each 

session, then anyone who eavesdrops on session can 
determine (within small range) the time of day on 
Alice’s machine.

– Even if only narrow time to within one year, there are 
only 3600 x 24 x 365 = 31,536,000 ≈ 225 keys.  
Modern machines can try all within minutes

• Algorithm used by rand() is publicly known
• If you can guess seed and know the algorithm, 

you have the key
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Another Problem: Output is non-
random

• In fact, it’s highly non-random
– E.g., low bit of every successive output of rand() 

alternates (0,1,0,1,0,1,…).  (Why?)
• Thus key space has been reduced from 2128 to 2113. 

(Why?)
– Each output of rand() depends only on previous 

output of rand()
• Let N0, N1, N2,… be sequence of next values during 

successive calls to rand().  On 32-bit machine we have 
Ni+1 = 1103515245 x Ni + 12345

• Let Xi be output of ith call to rand().  Then                  
Xi = Ni (mod 215).

• Thus xi+1 = (1103515245 x Xi + 12345) mod 215 
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Another Problem: Output is non-
random

• Since each output of rand() depends only on 
previous output of rand(), guessing first value of 
rand gives you the key.  
– Keyspace is now reduced to 215.  
– Left as exercise: first byte of key is sufficient to derive 

all other bytes of key, so key space is really 28.

• Bottom line: This implementation of rand() is 
totally insecure for cryptographic purposes, no 
matter how seed is chosen.

• Fact: On some platforms this is really how rand() 
is implemented.
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Recent Fun

  In 1995, it was discovered that Netscape 
browsers generated SSL session keys using the 
time and process ID as seed. This was 
guessable, so all SSL sessions were breakable 
in minutes. In fact, Netscape web servers 
generated their long-term RSA keypair in the 
same way, which was even worse.
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Recent Fun

   Soon after the Netscape flaw was discovered, 
someone noticed that the random number 
generator in Kerberos was similarly flawed and 
keys were guessable in seconds. In fact, it had 
been flawed for years, and no one had noticed 
until then. The code contained some functions 
tha t p rov ide secu re random number 
generation, but they inadvertently hadn’t been 
used due to a breakdown in the revision control 
process. 
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Recent Fun

   Four years later, someone found a different flaw 
in the (supposedly fixed) Kerberos random 
generator: there was a misplaced memset() 
call that was intended to zero out the seed 
after it was used, but actually zeroed out the 
seed before it was used, ensuring that an all-
zeros seed would be used to generate Kerberos 
keys. 
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Recent Fun

   Also in 1995, the XWindows ``magic cookie'' 
authentication method was discovered to have 
a serious flaw in how it generated magic 
cookies: it used rand() exactly as shown in the 
code snippet at the beginning of this lecture, 
and consequently there were only 28 possible 
magic cookies. It only took a fraction of a 
second to try them all and gain unauthorized 
access to someone else's X display. 
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Recent Fun

   Around the same time, someone discovered 
that NFS (Network Filesystem) filehandles were 
predictable in Sun's NFS implementation. Sun 
used the time of day and process ID to seed a 
random number generator, and the filehandle 
was calculated from this seed. Also, in the NFS 
protocol, anyone who knows a valid filehandle 
can bypass the authentication protocol. This 
meant that anyone could defeat Sun's NFS 
security simply by guessing the seed and trying 
all corresponding filehandles. 
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Recent Fun

  Similar flaws have been found in DNS resolvers, 
which would allow an attacker to send spoofed 
DNS responses and have them accepted by 
vulnerable DNS clients. 
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Recent Fun

  Majordomo used a bad random number 
generator when send ing subscr ip t ion 
confirmation messages, which would allow an 
attacker to subscribe some poor victim to 
thousands of mai l ing l i s ts and forge 
confirmations that appear to come from the 
victim. 
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Recent Fun

  At one point, someone noticed that PGP had 
been using the return value from read() to 
seed its pseudorandom number generator, 
rather than the contents of the buffer written 
by read(). Since read() always returned 1 (the 
number of bytes read), this meant that the 
seed was a stream of 1s, so session keys were 
predictable.
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Recent Fun

  More recently, a fun example came to light: one online 
poker site used an insecure pseudorandom number 
generator to shuffle the deck of cards. A player could see 
the cards in their own hands, derive some partial 
information about a few of the outputs from this 
pseudorandom number generator, and infer the seed 
used to shuffle the deck. This lets a smart player infer 
what cards everyone else holds, which obviously allows 
one to rake in the cash at the poker table. Oops. 
Fortunately, the folks who discovered the flaw notified 
the web site and wrote a paper rather than exploiting it 
to cheat others.
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Generating Pseudorandom Numbers

• True random number generators (TRNG): 
generates bits that are distributed uniformly at 
random, so that all outputs are equally likely, 
and with no patterns, correlations, etc.

• Cryptographically secure pseudorandom 
number generator (CS-PRNG). A CS-PRNG 
generates a sequence of bits that appear, as far 
as anyone can tell, to be indistinguishable from 
true random bits. CS-PRNGs use cryptographic 
techniques to achieve this task.
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Typically Two Step Process

• Generate a seed.
– Typically use a TRNG to generate a short seed that is 

truly random. The seed only needs to be long enough 
to prevent someone from guessing it. 

• E.g., the seed might be 128 bits. The seed plays a role 
similar to that of a cryptographic key. 

– Using a TRNG ensures that the seed will be 
unpredictable by any attacker.
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Typically Two Step Process

• Generate pseudorandom output, using this 
seed. 
– CS-PRNG is used to stretch seed to a long 

pseudorandom output. 
• Modern cryptographic CS-PRNGs allow generation of 

essentially unlimited amount of output (billions of bits 
are no problem). 

• Using a CS-PRNG ensures that the pseudorandom bits 
thus generated have no discernable patterns.

• The cryptographic properties of the CS-PRNG 
ensure that using pseudorandom bits instead of 
true-random bits makes no (detectable) 
difference.  
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So, need to know:

• How to build a CS-PRNG

• How to build a TRNG
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Cryptographyically Secure PRN 
Generation

• Is this even possible?
– 128 bits amplified to billions?
– It’s possible, especially with help of good cipher

• One possibility 
– Think of seed as cryptographic key
– Pick some symmetric key cipher (e.g., AES)
– Encrypt fixed message using key and cipher

• For many ciphers, ciphertext generated is 
indistinguishable from random bits
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Cryptographyically Secure PRN 
Generation

• Ex. Generate n bits from 128-bit seed k by 
AES-CBC(k, 0n)
– Proven a secure CS=PRNG if AES is a secure block 

cipher
• Note that any IV will do here for CBC mode

– Also efficient: need only one call to AES per 128 bits 
of output generated

• Standard AES implementations can generate output at 
rates in excess of 50 MB/sec on current desktop 
machines  
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Formalizing “Secure PRNG”

• Suppose PRNG that expands 128 bits to 
1,000,000
– PRNG is deterministic function                                

G:{0,1}128 -> {0,1}1,000,000  that maps seed s to 
output G(s)

• Let K denote random variable distributed 
uniformly on {0,1}128

• Let U denote random variable distributed 
uniformly on {0,1}1,000,000

• Roughly: G is secure if the output G(K) is 
indistinguishable from U
– E.g., no attacker A can tell whether a sequence of 

1,000,000 bits is generated by G or U.  
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Formalizing “Secure PRNG”

• More precisely: an attacker A is an algorithm 
that takes a sequence of one million bits as 
inputs, and outputs a guess as to how those bits 
computed.  

• The advantage of the attacker A is given by

• G is CS-PRNG is there is no feasible attacker A 
that has non-negligible advantage at breaking G

• Really no more to this: any good crypto library 
will provide implementation of CS-PRNG 
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True Random Number Generation

• Building a TRNG is more challenging. 
– On some platforms, CPU provides built-in hardware 

capability to generate truly random bits using an 
appropriate random physical process. 

– Unfortunately most platforms do not have this

•  Another possibility: hardware peripheral that 
acts as a dedicated TRNG, against using truly 
random physical processes. 
– Cost a few hundred dollars, so for high-value servers, 

a reasonable solution.  
– For many systems, including desktop machines, this 

is not viable. 
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So what do we do if there is no 
perfect source of physically random 

bits?
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In that case we’re hosed.  You can’t 
generate randomness out of nothing.

Anything that Alice can compute with a 
deterministic algorithm, the attacker can 

compute, too. 
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However…

• Often have some sources of randomness, 
though these are typically imperfect.  
– E.g, the source might generate values that are 

somewhat unpredictable, but are not uniformly 
distributed. 

– Or, some of the bits may be predictable by adversary. 
– Some sources may be slightly unreliable: they have 

some probability of failure, where a failed source 
emits completely predictable outputs (e.g., all zeros). 
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Examples

• A high-speed clock. 
– Some machines have clock with nanosecond 

precision. If an adversary can only predict the time 
on your machine to within a microsecond (because of 
clock skew), then the low 10 bits are unpredictable.

•  A soundcard. 
– Thermal noise will cause some randomness in  

samples from a microphone input with nothing 
plugged in.

• These samples not uniformly distributed (e.g., they may 
contain 60Hz hum from line noise), but they are not 
totally predictable, either.  

•
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Examples
• Keyboard input. 

– PGP asks user to type keys randomly during key 
generation, and uses these as well as the time 
between each pair of key presses as a randomness 
source. 

• This is imperfect, as not all keys are equally likely (e.g., 
uppercase letters less likely than lowercase letters).

• Disk timings. 
– Seek latencies on disks vary in a random manner, due 

to air turbulence inside the disk.  
• The random variability is very slight, and disk access 

times are highly correlated, but there is some empirical 
evidence that it may be possible to extract on the order 
of a random bit per second.
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How Do We Use These?

• One source on its own is probably insufficient. 
– Clock might contribute 10 bits of randomness,  

soundcard maybe 30 bits, keyboard maybe 30 bits, 
and disk timings maybe 20 bits (to make up some 
numbers). 

• In total, this provides 90 bits of randomness, assuming 
the sources are independent, which ought to be more 
than enough in the aggregate.

• So, combine data, perhaps by concatenation
– This is enough to ensure that adversary cannot guess 

exact value of concatenation
• But concatenation will not be uniformly distributed.  In 

general, entropy might be spread out among values in 
strange and unpredictable ways. 
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Standard Solution

• Use a cryptographic hash function, such as SHA3. 
– Seem to have the property that they do a good job of 

extracting uniformly-distributed randomness from 
imperfect random sources. 

• Ex. Suppose that x is a value from an imperfect source, or 
concatenation from multiple sources. Suppose also it is 
impossible for adversary to predict entire value x, except 
with negligible success probability (say, with probability 
1/2160). Then SHA3(x) is a 160-bit value whose distribution 
is (we think) approximately the uniform distribution.

– Generally, if it is impossible to predict exact value of x 
except with probability 1/2n, and if SHA3 is secure, then 
truncating SHA3(x) to n bits should provide an n-bit value 
that is uniformly distributed. 
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In Practice

• Built exactly as described:
– Identify as many sources of randomness as you can
– Collect samples from each source
– Concatenate sampled values
– Hash them (used to be with SHA1, no longer)
– Truncate to appropriate length

• Result is a short true-random value that can be 
used as a seed for a CS-PRNG
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Caution

• Some bad sources
– IP addresses: adversary will likely know this
– Content of network packets: assume an adversary can 

see these
• Network packet timings bad too, since adversary may be 

able to predict these depending on precision of timer
– Process IDs

• Process IDs for many servers and daemons are easily 
predictable, since boot process is deterministic and thus 
anything started at boot time is likely to received the same 
pid each time the machine is booted. Assume the 
adversary knows our OS, so for many processes the pid 
doesn't contribute any useful randomness. 
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In General

• Want values that will be random and 
unpredictable even to an adversary. 

• Also, because cost of RNG failure is so high, we 
are usually very conservative when we analyze 
potential randomness sources, and we evaluate 
them according to the assumptions that are 
most favorable to the attacker (among all 
scenarios that are remotely plausible).
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