
Fall 2014 CS 334: Computer Security
1

Public Key Cryptography

Fall 2014 CS 334: Computer Security
2

Terminology

• Asymmetric cryptography
• Public key (known to entire world)
• Private key (not secret key)
• Encryption process (P to C with public key)
• Decryption Process (C to P with private key)
• Digital signature (P signed with private key)

– Only holder of private key can sign, so can’t be forged
– But, can be recognized!

Fall 2014 CS 334: Computer Security
3

Uses

• Orders of magnitude slower than symmetric
key crypto, so usually used to initiate
symmetric key session

• Much easier to configure, so used widely in
network protocols to establish temporary
shared key that is used to transmit secret
(symmetric) key

Fall 2014 CS 334: Computer Security
4

Uses

• Transmitting over insecure channel
• Alice <Apu, Apr> , Bob <Bpu, Bpr>
• Alice to Bob encrypt m with Bpu

• Bob to alice encrypt m with Apu

• Accurately knowing public key of other person
is one of biggest challenges of using public key
crypto.

Fall 2014 CS 334: Computer Security
5

Uses

• Secure storage on insecure media
– Encrypt not whole file, but a randomly generated

secret key with public key. Then encrypt file using
secret key.

– Note if lose private key, you’re out of luck. To
backup, encrypt secret key with public key of a
trusted friend (lawyer).

• Important advantage: Alice can enrypt a
message for Bob without knowing Bob’s
decryption key

Fall 2014 CS 334: Computer Security
6

Uses
• Authentication

– If Bob wants to prove his identity with symmetric key
crypto, he needs a different symmetric key shared
with each potential correspondent (otherwise friends
can impersonate him)

– Alice can verify she’s talking to Bob (assuming she
knows his public key) by sending a message r to Bob
encrypted with Bob’s public key. Bob sends back the
cleartext message r (which only he could have
decrypted).

– Note Alice need not keep any secret information in
order to verify Bob. (Unlike symmetric key crypto, in
which a backup tape with a copy of the symmetric
key might be used to impersonate Bob)

Fall 2014 CS 334: Computer Security
7

Uses
• Digital Signatures: prove message generated

by particular individual
– “Forged in USA” (engraved on screwdriver claiming to

be of brand Craftsman)
– If Bob encrypts a message with his private key, this

proves both
• Bob generated the message
• The message has not been modified (to do so requires

Bob’s private key)
– Without Bob’s private key, creating ciphertext that

decrypts to something meaningful with Bob’s public
key is computationally infeasible

Fall 2014 CS 334: Computer Security
8

Uses
• Digital Signatures: prove message generated

by particular individual
– Non-repudiation: Bob cannot deny having generated

the message, since Alice could not have generated
the proper signature without knowledge of Bob’s
private key.

– Note that this can’t be done with symmetric key. If
Bob tries to claim he didn’t send the message, Alice
would know he’s lying (because no one but herself
and Bob would have the secret key), but Alice could
not prove this to anyone else (since she herself could
have generated the authentication code).

Fall 2014 CS 334: Computer Security
9

Modular Arithmetic

• Addition
– Can be used as scheme to encrypt digits, since it maps

each digit to different digit in a reversible way
(decryption is addition by additive inverse)

• Actually a Caeser cipher (and not good)

• Multiplication
– Look at mod 10. Multiplication by 1,3,7, or 9 works,

but not any of the others. Decryption done by
multiplying by multiplicative inverse.

– Multiplicative inverses can be found by using Euclid’s
Algorithm. Given x and n, Euclid’s algorithm finds y
such that xy = 1 mod n (if there is such a y)

Fall 2014 CS 334: Computer Security
10

Modular Arithmetic

• Why 1,3,7,9? These are the numbers that are
relatively prime to 10. All numbers that are
relatively prime to 10 will have multiplicative
inverses, others won’t (so we can use these as
ciphers, though not good ones).

Fall 2010 CS 334: Computer Security
11

+ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 0
2 2 3 4 5 6 7 8 9 0 1
3 3 4 5 6 7 8 9 0 1 2
4 4 5 6 7 8 9 0 1 2 3
5 5 6 7 8 9 0 1 2 3 4
6 6 7 8 9 0 1 2 3 4 5
7 7 8 9 0 1 2 3 4 5 6
8 8 9 0 1 2 3 4 5 6 7
9 9 0 1 2 3 4 5 6 7 8

Fall 2010 CS 334: Computer Security
12

× 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

Fall 2010 CS 334: Computer Security
13

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 4 8 6 2 4 8 6 2 4 8 6
3 1 3 9 7 1 3 9 7 1 3 9 7 1
4 1 4 6 4 6 4 6 4 6 4 6 4 6
5 1 5 5 5 5 5 5 5 5 5 5 5 5
6 1 6 6 6 6 6 6 6 6 6 6 6 6
7 1 7 9 3 1 7 9 3 1 7 9 3 1
8 1 8 4 2 6 8 4 2 6 8 4 2 6
9 1 9 1 9 1 9 1 9 1 9 1 9 1

yx

Fall 2014 CS 334: Computer Security
14

Totient Function

• Allegedly from total and quotient
• How many numbers less than n are relatively

prime to n?
• Totient function, φ(n) gives this.
• If n is prime, φ(n) = n-1 (1,2,…n-1)
• If p and q are prime, φ(pq) = (p-1)(q-1)

– p, 2p, … (q-1)p q, 2q, … (p-1)q not rel. prime so
have

– pq – 1 – [(p-1) + (q-1)] = (p-1)(q-1)

Fall 2010 CS 334: Computer Security
15

Modular Exponentiation

• Note exponentiation by 3 acts as encryption
of digits. Is there an inverse to this
operation? Sometimes.

• Fact:

– Not true for all n, but for all any square free n (any
n that doesn’t have p2 as a factor for any prime p)

• Note that if y = 1 mod φ(n), then xy mod n =
x mod n.

nxnx nyy modmod)(modφ=

Fall 2014 CS 334: Computer Security
16

RSA

• Key length variable (but should now be at least
1024 bits)

• Plaintext block must be smaller than key length
• Ciphertext block will be length of key

Fall 2014 CS 334: Computer Security
17

RSA
• Choose two large primes (around 256 bits each)

p and q. Let n = pq (very difficult to factor)
• Choose number e that is relatively prime to φ(n).

Can do this since you know p and q and thus
φ(pq) and from the derivation know exactly which
numbers are relatively prime!

• Public key is <e, n>
• To make private key, find d that is the

multiplicative inverse of e mod φ(n) (so ed = 1
mod φ(n)) (use Euclid’s algorithm)

• Private key is <d,n>
• To encrypt a number m, compute c = me mod n.
• To decrypt: m = cd mod n.

Fall 2014 CS 334: Computer Security
18

RSA Example

1. Select primes: p=17 & q=11
2. Compute n = pq =17×11=187
3. Compute ø(n)=(p–1)(q-1)=16×10=160
4. Select e : gcd(e,160)=1; choose e=7
5. Determine d: de=1 mod 160 and d < 160

Value is d=23 since 23×7=161= 10×160+1
6. Publish public key KU={7,187}
7. Keep secret private key KR={23,17,11}

Fall 2014 CS 334: Computer Security
19

RSA Example cont

• sample RSA encryption/decryption is:
• given message M = 88 (nb. 88<187)
• encryption:

C = 887 mod 187 = 11

• decryption:
M = 1123 mod 187 = 88

Fall 2014 CS 334: Computer Security
20

Questions

• Why does it work?
• Why is it secure?
• Are operations sufficiently efficient?
• How do we find big primes?

Fall 2014 CS 334: Computer Security
21

Why Does It Work?

• We chose d and e so that de = 1 mod φ(n), so
for any x,

• x(ed) mod n = x(ed mod φ(n)) mod n = x1 mod n =
x mod n.

• And (xe)d = x(ed)

Fall 2014 CS 334: Computer Security
22

Why Is It Secure?

• We’re not sure it is, but it seems to be
• Based on premise that factoring a big number is

difficult.
– Semiprimes, the product of two (not necessarily

distinct) primes, are most difficult numbers to
factor.

– Largest such semiprime yet factored is RSA-768,
768 bits, 232 decimal digits.
• Took two years, hundreds of machines, several

research institutions, and highly optimized code.
• Equivalent of 2000 CPU years on a single-core

2.2 GHz AMD Opteron

Fall 2014 CS 334: Computer Security
23

Why Is It Secure?

• If you can factor n, you’re golden:
– Problem is one of finding modular log (i.e. inverse of

exponential)
– Why? Adversary knows <e,n>. So for message m,

knows ciphertext is c = me mod n.
– So if adversary can reverse the exponentiation (that

is, find the number x s.t. xe mod n = c), she’s got the
original message m!

– Remember how we originally find this inverse: By
knowing φ(n). Which is difficult to know if you can’t
factor n

Fall 2014 CS 334: Computer Security
24

Why Is It Secure?

• We don’t know that there are not easier ways
to break it (we do know that breaking it is no
harder than factoring)

• We do know that it can be broken with a
quantum computer using Shor’s Algorithm
(1994) which has cubic time and linear space
complexity in the number of bits of the number
being factored
– So if quantum computers become practical...

Fall 2014 CS 334: Computer Security
25

This Can be Broken if Used
Carelessly!

• Suppose Bob knows I’m going to send Alice a
message with the identity of a congressperson
who is crooked
– So I’ll encrypt name with Alice’s public key

and send resulting ciphertext
– Bob knows Alice’s public key, so he can

encrypt all possible names and identify the
crook.

– A way around this: pad the name with a
large random number, say 128 bits long.
Then Bob has to try all of a space that is
huge. (I.e. 535 x (2128))

Fall 2014 CS 334: Computer Security
26

RSA Security

• three approaches to attacking RSA:
– brute force key search (infeasible given size of

numbers)
– mathematical attacks (based on difficulty of

computing ø(N), by factoring modulus N)
– timing attacks (on running of decryption)

Fall 2014 CS 334: Computer Security
27

Factoring Problem

• mathematical approach takes 3 forms:
– factor N=p.q, hence find ø(N) and then d
– determine ø(N) directly and find d
– find d directly

• currently believe all equivalent to factoring
– have seen slow improvements over the years

• Recall factorization of RSA-768 in 2009
– biggest improvement comes from improved algorithm

• cf “Quadratic Sieve” to “Generalized Number Field Sieve”
– barring dramatic breakthrough 1024+ bit RSA secure

• ensure p, q of similar size and matching other constraints

Fall 2014 CS 334: Computer Security
28

Progress in Factorization

• In 1977, RSA inventors dare Scientific
American readers to decode a cipher printed in
Martin Gardner’s column.
– Reward of $100
– Predicted it would take 40 quadrillion years
– Challenge used a public key size of 129 decimal digits

(about 428 bits)

• In 1994, a group working over the Internet
solved the problem in 8 months.

Fall 2014 CS 334: Computer Security
29

Progress In Factorization
• Factoring is a hard problem, but not as hard as it

used to be!
• MIPS year is a 1-MIPS machine running for a year
• For reference: a 3-GHz Pentium is about a 750-

MIPS machine

Fall 2014 CS 334: Computer Security
30

Figures are more than 10 years
old. Check out the Wikipedia
Integer Factorization Page for
more recent figures.

Fall 2014 CS 334: Computer Security
31

How Efficient Is RSA?

• Need 5 efficient operations: encryption,
decryption, generating a signature, verifying a
signature, generating a key (less important
since done less)

• These ops require taking large number, raising
it to large number, and then finding remainder
modulo large number. Way too slow if done
straightforward way.
– You can read about tricks to make this faster

Fall 2014 CS 334: Computer Security
32

Finding Big Primes
• By prime number theorem, probability of a

number less than n being prime is about 1 / ln n.
• Thus, for example, a hundred digit number has

about a 1 in 230 chance of being prime.
• No nice way of absolutely determining that a

huge number is prime, but we can guess pretty
accurately

• Fermat’s Theorem: If p is prime, and 0 < a < p,
then a^(p-1) mod p = 1 mod p.
– Works because though it’s possible for a^(n-1) = 1 mod

n for a non-prime, it’s not likely. For a randomly
generated number of about 100 digits, probability that n
is not prime but relation holds is about 1 in 10^(13).

– Other similar probabilistic algorithms for finding large
primes

Fall 2014 CS 334: Computer Security

UPDATE!!! The AKS Algorithm!

• The Agrawal-Keyal-Saxena Primality Test
– Published in 2002 (after previous slide created)
– A deterministic polynomial time primality-proving

algorithm
– Developed by three researchers at the Indian Institute

of Technology Kanpur
– Answered a centuries old question (and in a surprising

way)!
– Won 2006 Godel Prize and 2006 Fulkerson Prize

• Unfortunately the “constants” involved in the computational
complexity estimates are very large
– So not yet practical for identifying large primes (but

making this competitive with probabilistic algorithms is a
current research area)

33

Fall 2014 CS 334: Computer Security
34

Diffie-Hellman

• Oldest public key cryptosystem still in use
• Does neither encryption nor digital signatures.
• Used because it is fastest at what it does: allow

two individuals to agree on a symmetric key
even though they can only communicate over
insecure channels.

• Remarkable because neither Alice nor Bob need
any apriori information, yet after the exchange
of two messages, they share a secret number.

• One bad thing: no authentication, so Alice may
be setting up a key with Trudy!

Fall 2014 CS 334: Computer Security
35

The Process

• Alice and Bob agree on two primes, p and g,
where p is a large prime and g is a number less
than p (with some restrictions)

• Each chooses a random 1024 bit number (SA
for Alice, SB for Bob).

• Alice computes TA = gSA mod p. Bob computes
TB = gSB mod p.

• They exchange their T values
• Alice computes TBSA mod p, Bob computes TASB

mod p.
• Done: TBSA = (gSB)SA = g(SB*SA) = g(SA*SB) =

(gSA)SB = TASB mod p.

Fall 2014 CS 334: Computer Security
36

Why It Is Secure

• Whole world knows gSA and gSB, but getting
g(SA*SB) means having to do a modular logarithm
– If can find y such that gy = gSA, then know SA.

• And well, it’s not exactly secure -- it has that
problem with a man-in-the-middle attack (the
lack of authentication of endpoints)

