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Public Key Cryptography
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Terminology

• Asymmetric cryptography
• Public key (known to entire world)
• Private key (not secret key)
• Encryption process (P to C with public key)
• Decryption Process (C to P with private key)
• Digital signature (P signed with private key)

– Only holder of private key can sign, so can’t be forged
– But, can be recognized!
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Uses

• Orders of magnitude slower than symmetric 
key crypto, so usually used to initiate 
symmetric key session

• Much easier to configure, so used widely in 
network protocols to establish temporary 
shared key that is used to transmit secret 
(symmetric) key
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Uses

• Transmitting over insecure channel
• Alice <Apu, Apr> , Bob <Bpu, Bpr>
• Alice to Bob  encrypt m with Bpu

• Bob to alice  encrypt m with Apu

• Accurately knowing public key of other person 
is one of biggest challenges of using public key 
crypto.
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Uses

• Secure storage on insecure media
– Encrypt not whole file, but a randomly generated 

secret key with public key.  Then encrypt file using 
secret key. 

– Note if lose private key, you’re out of luck.  To 
backup, encrypt secret key with public key of a 
trusted friend (lawyer).

• Important advantage: Alice can enrypt a 
message for Bob without knowing Bob’s 
decryption key
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Uses
• Authentication 

– If Bob wants to prove his identity with symmetric key 
crypto, he needs a different symmetric key shared 
with each potential correspondent (otherwise friends 
can impersonate him)

– Alice can verify she’s talking to Bob (assuming she 
knows his public key) by sending a message r to Bob 
encrypted with Bob’s public key.  Bob sends back the 
cleartext message r (which only he could have 
decrypted).  

– Note Alice need not keep any secret information in 
order to verify Bob. (Unlike symmetric key crypto, in 
which a backup tape with a copy of the symmetric 
key might be used to impersonate Bob)
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Uses
• Digital Signatures: prove message generated 

by particular individual
– “Forged in USA” (engraved on screwdriver claiming to 

be of brand Craftsman)
– If Bob encrypts a message with his private key, this 

proves both 
• Bob generated the message
• The message has not been modified (to do so requires 

Bob’s private key)
– Without Bob’s private key, creating ciphertext that 

decrypts to something meaningful with Bob’s public 
key is computationally infeasible 
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Uses
• Digital Signatures: prove message generated 

by particular individual
– Non-repudiation: Bob cannot deny having generated 

the message, since Alice could not have generated 
the proper signature without knowledge of Bob’s 
private key.

– Note that this can’t be done with symmetric key.  If 
Bob tries to claim he didn’t send the message, Alice 
would know he’s lying (because no one but herself 
and Bob would have the secret key), but Alice could 
not prove this to anyone else (since she herself could 
have generated the authentication code).
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Modular Arithmetic

• Addition
– Can be used as scheme to encrypt digits, since it maps 

each digit to different digit in a reversible way 
(decryption is addition by additive inverse)

• Actually a Caeser cipher (and not good)

• Multiplication
– Look at mod 10.  Multiplication by 1,3,7, or 9 works, 

but not any of the others.  Decryption done by 
multiplying by multiplicative inverse.

– Multiplicative inverses can be found by using Euclid’s 
Algorithm.   Given x and n, Euclid’s algorithm finds y 
such that xy = 1 mod n (if there is such a y)
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Modular Arithmetic

• Why 1,3,7,9?  These are the numbers that are 
relatively prime to 10.  All numbers that are 
relatively prime to 10 will have multiplicative 
inverses, others won’t (so we can use these as 
ciphers, though not good ones).



Fall 2010 CS 334: Computer Security
11

+ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 0
2 2 3 4 5 6 7 8 9 0 1
3 3 4 5 6 7 8 9 0 1 2
4 4 5 6 7 8 9 0 1 2 3
5 5 6 7 8 9 0 1 2 3 4
6 6 7 8 9 0 1 2 3 4 5
7 7 8 9 0 1 2 3 4 5 6
8 8 9 0 1 2 3 4 5 6 7
9 9 0 1 2 3 4 5 6 7 8
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× 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1
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0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 4 8 6 2 4 8 6 2 4 8 6
3 1 3 9 7 1 3 9 7 1 3 9 7 1
4 1 4 6 4 6 4 6 4 6 4 6 4 6
5 1 5 5 5 5 5 5 5 5 5 5 5 5
6 1 6 6 6 6 6 6 6 6 6 6 6 6
7 1 7 9 3 1 7 9 3 1 7 9 3 1
8 1 8 4 2 6 8 4 2 6 8 4 2 6
9 1 9 1 9 1 9 1 9 1 9 1 9 1

yx
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Totient Function

• Allegedly from total and quotient
• How many numbers less than n are relatively 

prime to n?
• Totient function, φ(n) gives this.
• If n is prime, φ(n) = n-1  (1,2,…n-1)
• If p and q are prime, φ(pq) = (p-1)(q-1)

– p, 2p, … (q-1)p    q, 2q, … (p-1)q  not rel. prime so 
have 

– pq –  1 – [(p-1) + (q-1)] = (p-1)(q-1)
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Modular Exponentiation

• Note exponentiation by 3 acts as encryption 
of digits.  Is there an inverse to this 
operation? Sometimes.

• Fact:

– Not true for all n, but for all any square free n (any 
n that doesn’t have p2 as a factor for any prime p) 

• Note that if y = 1 mod φ(n), then xy mod n = 
x mod n.

nxnx nyy modmod )(modφ=
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RSA

• Key length variable (but should now be at least 
1024 bits)

• Plaintext block must be smaller than key length
• Ciphertext block will be length of key
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RSA
• Choose two large primes (around 256 bits each) 

p and q.  Let n = pq (very difficult to factor)
• Choose number e that is relatively prime to φ(n).  

Can do this since you know p and q and thus       
φ(pq) and from the derivation know exactly which 
numbers are relatively prime!

• Public key is <e, n>
• To make private key, find d that is the 

multiplicative inverse of e mod φ(n) (so ed = 1 
mod φ(n)) (use Euclid’s algorithm)

• Private key is <d,n>
• To encrypt a number m, compute c = me mod n.
• To decrypt: m = cd mod n.  
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RSA Example

1. Select primes: p=17 & q=11
2. Compute n = pq =17×11=187
3. Compute ø(n)=(p–1)(q-1)=16×10=160
4. Select e : gcd(e,160)=1; choose e=7
5. Determine d: de=1 mod 160 and d < 160 

Value is d=23 since 23×7=161= 10×160+1
6. Publish public key KU={7,187}
7. Keep secret private key KR={23,17,11}
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RSA Example cont

• sample RSA encryption/decryption is: 
• given message M = 88 (nb. 88<187)
• encryption:

C = 887 mod 187 = 11 

• decryption:
M = 1123 mod 187 = 88 



Fall 2014 CS 334: Computer Security
20

Questions

• Why does it work?
• Why is it secure?
• Are operations sufficiently efficient?
• How do we find big primes?
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Why Does It Work?

• We chose d and e so that de = 1 mod φ(n), so 
for any x, 

• x(ed) mod n = x(ed mod φ(n)) mod n = x1 mod n =  
x mod n.  

• And (xe)d = x(ed)
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Why Is It Secure?

• We’re not sure it is, but it seems to be
• Based on premise that factoring a big number is 

difficult.  
– Semiprimes, the product of two (not necessarily 

distinct) primes, are most difficult numbers to 
factor.  

– Largest such semiprime yet factored is RSA-768, 
768 bits, 232 decimal digits.  
• Took two years, hundreds of machines, several 

research institutions, and highly optimized code.
• Equivalent of 2000 CPU years on a single-core 

2.2 GHz AMD Opteron  
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Why Is It Secure?

• If you can factor n, you’re golden:
– Problem is one of finding modular log (i.e. inverse of 

exponential)  
– Why?  Adversary knows <e,n>.  So for message m, 

knows ciphertext is c = me mod n
– So if adversary can reverse the exponentiation (that 

is, find the number x s.t. xe mod n = c), she’s got the 
original message m!

– Remember how we originally find this inverse:  By 
knowing φ(n).  Which is difficult to know if you can’t 
factor n
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Why Is It Secure?

• We don’t know that there are not easier ways 
to break it (we do know that breaking it is no 
harder than factoring)

• We do know that it can be broken with a 
quantum computer using Shor’s Algorithm 
(1994) which has cubic time and linear space 
complexity in the number of bits of the number 
being factored
– So if quantum computers become practical...
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This Can be Broken if Used 
Carelessly!

• Suppose Bob knows I’m going to send Alice a 
message with the identity of a congressperson 
who is crooked
– So I’ll encrypt name with Alice’s public key 

and send resulting ciphertext
– Bob knows Alice’s public key, so he can 

encrypt all possible names and identify the 
crook.  

– A way around this: pad the name with a 
large random number, say 128 bits long.  
Then Bob has to try all of a space that is 
huge.  (I.e. 535 x (2128))
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RSA Security

• three approaches to attacking RSA:
– brute force key search (infeasible given size of 

numbers)
– mathematical attacks (based on difficulty of 

computing ø(N), by factoring modulus N)
– timing attacks (on running of decryption)
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Factoring Problem

• mathematical approach takes 3 forms:
– factor N=p.q, hence find ø(N) and then d
– determine ø(N) directly and find d
– find d directly

• currently believe all equivalent to factoring
– have seen slow improvements over the years 

• Recall factorization of RSA-768 in 2009 
– biggest improvement comes from improved algorithm

• cf “Quadratic Sieve” to “Generalized Number Field Sieve”
– barring dramatic breakthrough 1024+ bit RSA secure

• ensure p, q of similar size and matching other constraints
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Progress in Factorization

• In 1977, RSA inventors dare Scientific 
American readers to decode a cipher printed in 
Martin Gardner’s column.  
– Reward of $100
– Predicted it would take 40 quadrillion years
– Challenge used a public key size of 129 decimal digits 

(about 428 bits)

• In 1994, a group working over the Internet 
solved the problem in 8 months.
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Progress In Factorization
• Factoring is a hard problem, but not as hard as it 

used to be!
• MIPS year is a 1-MIPS machine running for a year
• For reference: a 3-GHz Pentium is about a 750-

MIPS machine
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Figures are more than 10 years 
old. Check out the Wikipedia 
Integer Factorization Page for 
more recent figures.
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How Efficient Is RSA?

• Need 5 efficient operations: encryption, 
decryption, generating a signature, verifying a 
signature, generating a key (less important 
since done less)

• These ops require taking large number, raising 
it to large number, and then finding remainder 
modulo large number.  Way too slow if done 
straightforward way.
– You can read about tricks to make this faster
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Finding Big Primes
• By prime number theorem, probability of a 

number less than n being prime is about 1 / ln n.
• Thus, for example, a hundred digit number has 

about a 1 in 230 chance of being prime.
• No nice way of absolutely determining that a 

huge number is prime, but we can guess pretty 
accurately

• Fermat’s Theorem: If p is prime, and 0 < a < p, 
then a^(p-1) mod p = 1 mod p. 
– Works because though it’s possible for a^(n-1) = 1 mod 

n for a non-prime, it’s not likely.   For a randomly 
generated number of about 100 digits, probability that n 
is not prime but relation holds is about 1 in 10^(13).  

– Other similar probabilistic algorithms for finding large 
primes
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UPDATE!!!  The AKS Algorithm!

• The Agrawal-Keyal-Saxena Primality Test
– Published in 2002 (after previous slide created)
– A deterministic polynomial time primality-proving 

algorithm
– Developed by three researchers at the Indian Institute 

of Technology Kanpur
– Answered a centuries old question (and in a surprising 

way)!
– Won 2006 Godel Prize and 2006 Fulkerson Prize 

• Unfortunately the “constants” involved in the computational 
complexity estimates are very large
– So not yet practical for identifying large primes (but 

making this competitive with probabilistic algorithms is a 
current research area)

33
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Diffie-Hellman

• Oldest public key cryptosystem still in use
• Does neither encryption nor digital signatures.
• Used because it is fastest at what it does: allow 

two individuals to agree on a symmetric key 
even though they can only communicate over 
insecure channels.

• Remarkable because neither Alice nor Bob need 
any apriori information, yet after the exchange 
of two messages, they share a secret number.

• One bad thing: no authentication, so Alice may 
be setting up a key with Trudy!
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The Process

• Alice and Bob agree on two primes, p and g, 
where p is a large prime and g is a number less 
than p (with some restrictions)

• Each chooses a random 1024 bit number (SA 
for Alice, SB for Bob).

• Alice computes TA = gSA mod p.  Bob computes 
TB = gSB mod p. 

• They exchange their T values
• Alice computes TBSA mod p, Bob computes TASB 

mod p.
• Done: TBSA = (gSB)SA = g(SB*SA) = g(SA*SB) = 

(gSA)SB = TASB mod p.
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Why It Is Secure

• Whole world knows gSA and gSB, but getting        
g(SA*SB) means having to do a modular logarithm
– If can find y such that gy = gSA, then know SA.

• And well, it’s not exactly secure -- it has that  
problem with a man-in-the-middle attack (the 
lack of authentication of endpoints)


