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Network Attacks

CS 334 - Computer Security

Once again thanks to Vern Paxson and David Wagner
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Layers 1 & 2: General Threats?
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Encoding bits to send them 
over a single physical link
   e.g. patterns of
     voltage levels /
     photon intensities /
     RF modulation

Framing and transmission of a 
collection of bits into individual 
messages sent across a single 
“subnetwork” (one physical 
technology)
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Physical/Link-Layer Threats: Eavesdropping

• For subnets using broadcast technologies (e.g., 
WiFi, some types of Ethernet), get it for “free”
– Each attached system ’s NIC (= Network Interface Card) 

can capture any communication on the subnet
– Some handy tools for doing so

o Wireshark
o tcpdump / windump
o bro   (demo)

• For any technology, routers (and internal 
“switches”) can look at / export traffic they forward

• You can also “tap” a link
– Insert a device to mirror physical signal
– Or: just steal it!
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Stealing Photons
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• With physical access to a subnetwork, 
attacker can
– Overwhelm its signaling

o E.g., jam WiFi’s RF
– Send messages that violate the Layer-2 

protocol’s rules
o E.g., send messages > maximum allowed size, sever 

timing synchronization, ignore fairness rules

• Routers & switches can simply “drop” traffic
• There’s also the heavy-handed approach …

Physical/Link-Layer Threats: Disruption
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• With physical access to a subnetwork, 
attacker can create any message they like

• May require root/administrator access to 
have full freedom

• Particularly powerful when combined with 
eavesdropping
– Can manipulate existing communications 

Physical/Link-Layer Threats: Injection
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Layer 3: General Threats?
Application
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Bridges multiple “subnets” to 
provide end-to-end internet 
connectivity between nodes

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

PayloadIP = Internet Protocol
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• Major:
– Can set arbitrary source address

o “Spoofing” - receiver has no idea who you are
– Can set arbitrary destination address

o Enables “scanning” - brute force searching for hosts

• Lesser:
– Fragmentation mechanism can evade network 

monitoring 
– Identification field leaks information
– Time To Live allows discovery of topology
– TOS can let you steal high priority service
– IP “options” can reroute traffic

Network-Layer Threats 

(FYI; don’t worry about unless later explicitly covered)
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Layer 4: General Threats?
Application

Transport

(Inter)Network

Link

Physical
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End-to-end communication 
between processes
  (TCP, UDP)

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data
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• Normally, TCP finishes (“closes”) a connection by 
each side sending a FIN control message
– Reliably delivered, since other side must ack

• But: if a TCP endpoint finds unable to continue 
(process dies; info from other “peer” is 
inconsistent), it abruptly terminates by sending a 
RST control message
– Unilateral
– Takes effect immediately (no ack needed)
– Only accepted by peer if has correct sequence 

numbers

• So: if attacker knows sequence numbers …

TCP Threat: Disruption 
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• If attacker knows sequence numbers, can inject 
whatever they like into TCP connection

• Instead of a RST, how about data?
• Note: desynchronizes client & server

– They have inconsistent views of the byte stream and 
what acknowledgments refer to

– However, if you’ve already killed one end with a 
spoofed RST, doesn’t matter

⇒ TCP session hijacking
– General means to take over an already-established 

connection!
– We are toast if an attacker can see our TCP traffic 

TCP Threat: Injection 
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TCP Threat: Blind Spoofing

Client  (1.2.3.4) Server  (5.6.7.8)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Each host tells its Initial 
Sequence Number (ISN) 
to the other host.

(Spec says to pick based on 
local clock)

• TCP connection establishment:

• How can an attacker create an apparent connection 
from 1.2.3.4 to 5.6.7.8 even if they can’t see the real 
1.2.3.4’s traffic?
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Blind Spoofing: Attackerʼs Viewpoint

Client  (1.2.3.4) Server  (5.6.7.8)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Each host tells its Initial 
Sequence Number (ISN) 
to the other host.

(Spec says to pick based on 
local clock)

Attacker can 
spoof this

But can’t 
see this

So how do they 
know what to 

put here?
Hmm, any way 
for the attacker 
to know this?

Sure - make a non-spoofed 
connection first, and see what 

server used for ISN y then!

How Do We Fix This?

Use a random ISN
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TCPʼs Exponential Rate Increase
Unless there’s loss, TCP doubles data in flight every 
“round-trip”
Mechanism: for each arriving ack for new data, 
increase allowed data by 1 maximum-sized packet

D0-99 A100
D100-199

D200-299 A200A300 D D D D

1 2 43

A A A A

8

E.g., suppose maximum-sized packet = 100 bytes

Src

Dest
Time



17

TCP Threat: Cheating on Allowed Rate
How can the destination (receiver) get data to come 
to them faster than normally allowed?

D0-99

Src

Dest

1

A25
A50

A75 A100

D100-199

D200-299

2

How do we defend against this?

D300-399

3

D400-499

4

D500-599

5

ACK-Splitting: each ack, even though partial, increases 
allowed data by one maximum-sized packet

Time
Change rule to require 
“full” ack for all data 
sent in a packet
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TCP Threat: Cheating on Allowed Rate
How can the destination (receiver) still get data to 
come to them faster than normally allowed?

D0-99

Src

Dest

1

A100
A200

A300 A400

D100-199

D200-299

2

How do we defend against this?

D300-399

3

D400-499

4

D500-599

5

Opportunistic ack’ing: acknowledge data not yet seen!

Time
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• Approach #1: if you receive an ack for data you 
haven’t sent, kill the connection
– Works only if receiver acks too far ahead

• Approach #2: follow the “round trip time” (RTT) 
and if an ack arrives too fast, kill the connection
– Flaky: RTT can vary a lot, so you might kill innocent 

connections

• Approach #3: make the receiver prove they 
received the data
– Add a nonce (“random” marker) & require receiver to 

include it in ack.  Kill connections w/ incorrect nonces
o (nonce could be function computed over payload, so sender 

doesn’t explicitly transmit, only implicitly)

Keeping Receivers Honest

Note: a protocol change
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• An attacker who can observe your TCP connection can 
manipulate it:
– Forcefully terminate by forging a RST packet
– Inject data into either direction by forging data packets
– Works because they can include in their spoofed traffic the correct 

sequence numbers (both directions) and TCP ports
– Remains a major threat today

Summary of TCP Security Issues
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What we see here is that inject is taking over the connection.  The netcat window has initiated a 
connection with mole on port 1234, and has sent some data (“what I type here”, etc).  Then we see 
that netcat indicates the connection has been closed.  But mole has not closed the connection.  
Rather the inject window has closed the connection with netcat window, and remains connected to 
mole, who thinks it is talking to netcat.
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• An attacker who can observe your TCP connection can 
manipulate it:
– Forcefully terminate by forging a RST packet
– Inject data into either direction by forging data packets
– Works because they can include in their spoofed traffic the correct 

sequence numbers (both directions) and TCP ports
– Remains a major threat today

• An attacker who can predict the ISN chosen by a server 
can “blind spoof” a connection to the server
– Makes it appear that host ABC has connected, and has sent data 

of the attacker’s choosing, when in fact it hasn’t
– Undermines any security based on trusting ABC’s IP address
– Allows attacker to “frame” ABC or otherwise avoid detection
– Fixed today by choosing random ISNs

• Both highlight flawed “security-by-obscurity” assumption

Summary of TCP Security Issues
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• TCP limits the rate at which senders transmit:
– TCP relies on endpoints behaving properly to achieve “fairness” in 

how network capacity is used
– Protocol lacks a mechanism to prevent cheating
– Senders can cheat by just not abiding by the limits

o Remains a significant threat: essentially nothing today prevents

• Receivers can manipulate honest senders into sending 
too fast because senders trust that receivers are honest
– To a degree, sender can validate (e.g., partial acks)
– A nonce can force receiver to only act on data they’ve seen
– Rate manipulation remains a threat today

• General observation: tension between ease/power of 
protocols that assume everyone follows vs. violating
– Security problems persist due to difficulties of retrofitting …
– … coupled with investment in installed base

TCP Security Issues, conʼt
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Dynamic Host Configuration Protocol

new
client

DHCP server

DHCP discover(broadcast)

DHCP offer

DHCP request

DHCP ACK

(broadcast)

“offer” message 
includes IP address, 
DNS server, “gateway 
router”, and how long 
client can have these 
(“lease” time)

Threats?
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Dynamic Host Configuration Protocol

new
client

DHCP server

DHCP discover(broadcast)

DHCP offer

DHCP request

DHCP ACK

(broadcast)

“offer” message 
includes IP address, 
DNS server, “gateway 
router”, and how long 
client can have these 
(“lease” time)

Attacker on same 
subnet can hear 

new host’s DHCP 
request
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Dynamic Host Configuration Protocol

new
client

DHCP server

DHCP discover(broadcast)

DHCP offer

DHCP request

DHCP ACK

(broadcast)

“offer” message 
includes IP address, 
DNS server, “gateway 
router”, and how long 
client can have these 
(“lease” time)

Attacker can race the actual 
server; if they win, replace DNS 

server and/or gateway router
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• Substitute a fake DNS server
– Redirect any of a host’s lookups to a machine of 

attacker’s choice

• Substitute a fake “gateway”
– Intercept all of a host’s off-subnet traffic

o (even if not preceded by a DNS lookup)
– Relay contents back and forth between host and 

remote server
o Modify however attacker chooses

• An invisible “Person In The Middle” (PITM)
– Victim host has no way of knowing it’s happening

o (Can’t necessarily alarm on peculiarity of receiving multiple 
DHCP replies, since that can happen benignly)

• How can we fix this?

DHCP Threats
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Non-Eavesdropping Threats: DNS
• DHCP attacks show brutal power of attacker who 

can eavesdrop
• Consider attackers who can’t eavesdrop - but still 

aim to manipulate us via how protocols function
• DNS: path-critical for just about everything we do

– Maps hostnames ⇔ IP addresses
– Design only scales if we can minimize lookup traffic

o #1 way to do so: caching
o #2 way to do so: return not only answers to queries, but additional 

info that will likely be needed shortly

• Directly interacting w/ DNS: dig program on Unix
– Allows querying of DNS system
– Dumps each field in DNS responses



29

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

Use Unix “dig” utility to look up DNS 
address (“A”) for hostname eecs.mit.edu 
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

These are just comments from dig itself 
with details of the request/response
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

Transaction identifier
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

Here the server echoes back the 
question that it is answering
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

“Answer” tells us its address is 18.62.1.6 and 
we can cache the result for 21,600 seconds
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

“Authority” tells us the name servers responsible for 
the answer.  Each record gives the hostname of a 
different name server (“NS”) for names in mit.edu.  
We should cache each record for 11,088 seconds. 
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

“Additional” provides extra information to save us from 
making separate lookups for it, or helps with bootstrapping.  

Here, it tells us the IP addresses for the hostnames of the 
name servers.  We add these to our cache.
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                30      IN      NS      eecs.berkeley.edu. 

;; ADDITIONAL SECTION:
eecs.berkeley.edu.      30      IN      A       18.6.6.6
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

What happens if the mit.edu server 
returns the following to us instead?
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                30      IN      NS      eecs.berkeley.edu. 

;; ADDITIONAL SECTION:
eecs.berkeley.edu.      30      IN      A       18.6.6.6
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

We dutifully store in our cache a mapping of 
eecs.berkeley.edu to an IP address under 
MIT’s control.  (It could have been any IP 
address they wanted, not just one of theirs.)
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                30      IN      NS      eecs.berkeley.edu. 

;; ADDITIONAL SECTION:
eecs.berkeley.edu.      30      IN      A       18.6.6.6
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

In this case they chose to make the 
mapping disappear after 30 seconds.  
They could have made it persist for 
weeks, or disappear even quicker.
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                30      IN      NS      eecs.berkeley.edu. 

;; ADDITIONAL SECTION:
eecs.berkeley.edu.      30      IN      A       18.6.6.6
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

How do we fix such cache poisoning?
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                30      IN      NS      eecs.berkeley.edu. 

;; ADDITIONAL SECTION:
eecs.berkeley.edu.      30      IN      A       18.6.6.6
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

Don’t accept Additional records unless 
they’re for the domain we’re looking up

E.g., looking up eecs.mit.edu ⇒ only accept 
additional records from *.mit.edu

No extra risk in accepting these since server could 
return them to us directly in an Answer anyway.

=
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DNS Threats, conʼt

What about blind spoofing?

• Say we look up 
mail.google.com; how can 
an off-path attacker feed us a 
bogus A answer before the 
legitimate server replies?

• How can such an attacker 
even know we are looking up 
mail.google.com? Additional information

(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

16 bits 16 bits

<img	
  src="http://mail.google.com"	
  …>
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DNS Blind Spoofing, conʼt

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

16 bits 16 bits

So this will be k+1

They observe ID k here<img	
  src="http://badguy.com"	
  …>
<img	
  src="http://mail.google.com"	
  …>

Originally, identification field 
incremented by 1 for each 
request.  How does attacker 
guess it?

Once they know we’re looking it 
up, they just have to guess the 
Identification field and reply 
before legit server.

How hard is that?

Fix?
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DNS Blind Spoofing, conʼt

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

16 bits 16 bits

Attacker can send lots of replies, 
not just one …

However: once reply from legit 
server arrives (with correct 
Identification), it’s cached and no 
more opportunity to poison it. 
Victim is innoculated!

Once we randomize the 
Identification, attacker has a 
1/65536 chance of guessing it 
correctly.
Are we pretty much safe?

Unless attacker can send 
1000s of replies before legit 
arrives, we’re likely safe - 
phew! ?
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DNS Blind Spoofing (Kaminsky 2008)
• Two key ideas:

–Spoof uses Additional field (rather than Answer)
–Attacker can get around caching of legit replies 

by generating a series of different name lookups: 

<img	
  src="http://random1.google.com"	
  …>
<img	
  src="http://random2.google.com"	
  …>
<img	
  src="http://random3.google.com"	
  …>

...
<img	
  src="http://randomN.google.com"	
  …>
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;; QUESTION SECTION:
;randomk.google.com.            IN      A

;; ANSWER SECTION:
randomk.google.com      21600   IN      A       doesn’t	
  matter

;; AUTHORITY SECTION:
google.com.             11088   IN      NS      mail.google.com

;; ADDITIONAL SECTION:
mail.google.com         126738  IN      A       6.6.6.6

Kaminsky Blind Spoofing, conʼt
For each lookup of randomk.google.com, 
attacker returns a bunch of records like this, 
each with a different Identifier

Once they win the race, not only have they poisoned 
mail.google.com … but also the cached NS record for 
google.com’s name server - so any future X.google.com 
lookups go through the attacker’s machine
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randomk.google.com      21600   IN      A       doesn’t	
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For each lookup of randomk.google.com, 
attacker returns a bunch of records like this, 
each with a different Identifier

Once they win the race, not only have they poisoned 
mail.google.com … but also the cached NS record for 
google.com’s name server - so any future X.google.com 
lookups go through the attacker’s machine



Note: Itʼs not a matter of being lucky!

• The adversary know that all of these DNS requests 
are generated

• It also knows that the Query IDS are 
pseudorandomly generated.

• If it sees enough of these quickly enough, it can 
determine the parameters of the pseudorandom 
number generator!

• Then it knows what is coming next!

47
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Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

16 bits 16 bitsCentral problem: all that tells a 
client they should accept a 
response is that it matches the 
Identification field.

With only 16 bits, it lacks 
sufficient entropy: even if truly 
random, the search space an 
attacker must brute force is too 
small.

Where can we get more entropy?  
(Without requiring a protocol 
change.)
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Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

DNS (primarily) uses UDP for 
transport rather than TCP.

UDP header has:
  16-bit Source & Destination ports
    (identify processes, like w/ TCP)
  16-bit checksum, 16-bit length

 SRC port  DST port

checksum length

16 bits 16 bits

UDP Payload
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Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

DNS (primarily) uses UDP for 
transport rather than TCP.

UDP header has:
  16-bit Source & Destination ports
    (identify processes, like w/ TCP)
  16-bit checksum, 16-bit length

Src=53 Dest=53

checksum length

16 bits 16 bits

For requestor to receive DNS 
reply, needs both correct 
Identification and correct ports.

On a request, DST port = 53.
SRC port usually also 53 - but 
not fundamental, just convenient

Total entropy: 16 bits
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Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

Src=rnd Dest=53

checksum length

16 bits 16 bits
“Fix”: use random source port

32 bits of entropy makes it orders 
of magnitude harder for attacker 
to guess all the necessary fields 
and dupe victim into accepting 
spoof response.

This is what primarily “secures” 
DNS today.  (Note: not all 
resolvers have implemented 
random source ports!)

Total entropy: 32 bits
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• DHCP threats highlight:
– Broadcast protocols inherently at risk of attacker spoofing

o Attacker knows exactly when to try it
– When initializing, systems are particularly vulnerable because they 

can lack a trusted foundation to build upon
– Tension between wiring in trust vs. flexibility/convenience
– PITM attacks insidious because no indicators they’re occurring

Summary of DHCP/DNS Security Issues
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• DHCP threats highlight:
– Broadcast protocols inherently at risk of attacker spoofing

o Attacker knows exactly when to try it
– When initializing, systems are particularly vulnerable because they 

can lack a trusted foundation to build upon
– Tension between wiring in trust vs. flexibility/convenience
– MITM attacks insidious because no indicators they’re occurring

• DNS threats highlight:
– Attackers can attack opportunistically rather than eavesdropping

o Cache poisoning only requires victim to look up some name under 
attacker’s control

– Attackers can often manipulate victims into vulnerable activity
o E.g., IMG	
  SRC in web page to force DNS lookups

– Crucial for identifiers associated with communication to have 
sufficient entropy (= a lot of bits of unpredictability)

– “Attacks only get better”: threats that appears technically remote 
can become practical due to unforeseen cleverness

Summary of DHCP/DNS Security Issues
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Questions?


