
1

Network Attacks

CS 334 - Computer Security

Once again thanks to Vern Paxson and David Wagner

2

Layers 1 & 2: General Threats?

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Encoding bits to send them
over a single physical link
 e.g. patterns of
 voltage levels /
 photon intensities /
 RF modulation

Framing and transmission of a
collection of bits into individual
messages sent across a single
“subnetwork” (one physical
technology)

3

Physical/Link-Layer Threats: Eavesdropping

• For subnets using broadcast technologies (e.g.,
WiFi, some types of Ethernet), get it for “free”
– Each attached system ’s NIC (= Network Interface Card)

can capture any communication on the subnet
– Some handy tools for doing so

o Wireshark
o tcpdump / windump
o bro (demo)

• For any technology, routers (and internal
“switches”) can look at / export traffic they forward

• You can also “tap” a link
– Insert a device to mirror physical signal
– Or: just steal it!

4

Stealing Photons

5

6

• With physical access to a subnetwork,
attacker can
– Overwhelm its signaling

o E.g., jam WiFi’s RF
– Send messages that violate the Layer-2

protocol’s rules
o E.g., send messages > maximum allowed size, sever

timing synchronization, ignore fairness rules

• Routers & switches can simply “drop” traffic
• There’s also the heavy-handed approach …

Physical/Link-Layer Threats: Disruption

7

8

• With physical access to a subnetwork,
attacker can create any message they like

• May require root/administrator access to
have full freedom

• Particularly powerful when combined with
eavesdropping
– Can manipulate existing communications

Physical/Link-Layer Threats: Injection

9

Layer 3: General Threats?
Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Bridges multiple “subnets” to
provide end-to-end internet
connectivity between nodes

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

PayloadIP = Internet Protocol

10

• Major:
– Can set arbitrary source address

o “Spoofing” - receiver has no idea who you are
– Can set arbitrary destination address

o Enables “scanning” - brute force searching for hosts

• Lesser:
– Fragmentation mechanism can evade network

monitoring
– Identification field leaks information
– Time To Live allows discovery of topology
– TOS can let you steal high priority service
– IP “options” can reroute traffic

Network-Layer Threats

(FYI; don’t worry about unless later explicitly covered)

11

Layer 4: General Threats?
Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

End-to-end communication
between processes
 (TCP, UDP)

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

12

• Normally, TCP finishes (“closes”) a connection by
each side sending a FIN control message
– Reliably delivered, since other side must ack

• But: if a TCP endpoint finds unable to continue
(process dies; info from other “peer” is
inconsistent), it abruptly terminates by sending a
RST control message
– Unilateral
– Takes effect immediately (no ack needed)
– Only accepted by peer if has correct sequence

numbers

• So: if attacker knows sequence numbers …

TCP Threat: Disruption

13

• If attacker knows sequence numbers, can inject
whatever they like into TCP connection

• Instead of a RST, how about data?
• Note: desynchronizes client & server

– They have inconsistent views of the byte stream and
what acknowledgments refer to

– However, if you’ve already killed one end with a
spoofed RST, doesn’t matter

⇒ TCP session hijacking
– General means to take over an already-established

connection!
– We are toast if an attacker can see our TCP traffic

TCP Threat: Injection

14

TCP Threat: Blind Spoofing

Client (1.2.3.4) Server (5.6.7.8)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Each host tells its Initial
Sequence Number (ISN)
to the other host.

(Spec says to pick based on
local clock)

• TCP connection establishment:

• How can an attacker create an apparent connection
from 1.2.3.4 to 5.6.7.8 even if they can’t see the real
1.2.3.4’s traffic?

15

Blind Spoofing: Attackerʼs Viewpoint

Client (1.2.3.4) Server (5.6.7.8)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Each host tells its Initial
Sequence Number (ISN)
to the other host.

(Spec says to pick based on
local clock)

Attacker can
spoof this

But can’t
see this

So how do they
know what to

put here?
Hmm, any way
for the attacker
to know this?

Sure - make a non-spoofed
connection first, and see what

server used for ISN y then!

How Do We Fix This?

Use a random ISN

16

TCPʼs Exponential Rate Increase
Unless there’s loss, TCP doubles data in flight every
“round-trip”
Mechanism: for each arriving ack for new data,
increase allowed data by 1 maximum-sized packet

D0-99 A100
D100-199

D200-299 A200A300 D D D D

1 2 43

A A A A

8

E.g., suppose maximum-sized packet = 100 bytes

Src

Dest
Time

17

TCP Threat: Cheating on Allowed Rate
How can the destination (receiver) get data to come
to them faster than normally allowed?

D0-99

Src

Dest

1

A25
A50

A75 A100

D100-199

D200-299

2

How do we defend against this?

D300-399

3

D400-499

4

D500-599

5

ACK-Splitting: each ack, even though partial, increases
allowed data by one maximum-sized packet

Time
Change rule to require
“full” ack for all data
sent in a packet

18

TCP Threat: Cheating on Allowed Rate
How can the destination (receiver) still get data to
come to them faster than normally allowed?

D0-99

Src

Dest

1

A100
A200

A300 A400

D100-199

D200-299

2

How do we defend against this?

D300-399

3

D400-499

4

D500-599

5

Opportunistic ack’ing: acknowledge data not yet seen!

Time

19

• Approach #1: if you receive an ack for data you
haven’t sent, kill the connection
– Works only if receiver acks too far ahead

• Approach #2: follow the “round trip time” (RTT)
and if an ack arrives too fast, kill the connection
– Flaky: RTT can vary a lot, so you might kill innocent

connections

• Approach #3: make the receiver prove they
received the data
– Add a nonce (“random” marker) & require receiver to

include it in ack. Kill connections w/ incorrect nonces
o (nonce could be function computed over payload, so sender

doesn’t explicitly transmit, only implicitly)

Keeping Receivers Honest

Note: a protocol change

20

• An attacker who can observe your TCP connection can
manipulate it:
– Forcefully terminate by forging a RST packet
– Inject data into either direction by forging data packets
– Works because they can include in their spoofed traffic the correct

sequence numbers (both directions) and TCP ports
– Remains a major threat today

Summary of TCP Security Issues

21

What we see here is that inject is taking over the connection. The netcat window has initiated a
connection with mole on port 1234, and has sent some data (“what I type here”, etc). Then we see
that netcat indicates the connection has been closed. But mole has not closed the connection.
Rather the inject window has closed the connection with netcat window, and remains connected to
mole, who thinks it is talking to netcat.

22

• An attacker who can observe your TCP connection can
manipulate it:
– Forcefully terminate by forging a RST packet
– Inject data into either direction by forging data packets
– Works because they can include in their spoofed traffic the correct

sequence numbers (both directions) and TCP ports
– Remains a major threat today

• An attacker who can predict the ISN chosen by a server
can “blind spoof” a connection to the server
– Makes it appear that host ABC has connected, and has sent data

of the attacker’s choosing, when in fact it hasn’t
– Undermines any security based on trusting ABC’s IP address
– Allows attacker to “frame” ABC or otherwise avoid detection
– Fixed today by choosing random ISNs

• Both highlight flawed “security-by-obscurity” assumption

Summary of TCP Security Issues

23

• TCP limits the rate at which senders transmit:
– TCP relies on endpoints behaving properly to achieve “fairness” in

how network capacity is used
– Protocol lacks a mechanism to prevent cheating
– Senders can cheat by just not abiding by the limits

o Remains a significant threat: essentially nothing today prevents

• Receivers can manipulate honest senders into sending
too fast because senders trust that receivers are honest
– To a degree, sender can validate (e.g., partial acks)
– A nonce can force receiver to only act on data they’ve seen
– Rate manipulation remains a threat today

• General observation: tension between ease/power of
protocols that assume everyone follows vs. violating
– Security problems persist due to difficulties of retrofitting …
– … coupled with investment in installed base

TCP Security Issues, conʼt

24

Dynamic Host Configuration Protocol

new
client

DHCP server

DHCP discover(broadcast)

DHCP offer

DHCP request

DHCP ACK

(broadcast)

“offer” message
includes IP address,
DNS server, “gateway
router”, and how long
client can have these
(“lease” time)

Threats?

25

Dynamic Host Configuration Protocol

new
client

DHCP server

DHCP discover(broadcast)

DHCP offer

DHCP request

DHCP ACK

(broadcast)

“offer” message
includes IP address,
DNS server, “gateway
router”, and how long
client can have these
(“lease” time)

Attacker on same
subnet can hear

new host’s DHCP
request

26

Dynamic Host Configuration Protocol

new
client

DHCP server

DHCP discover(broadcast)

DHCP offer

DHCP request

DHCP ACK

(broadcast)

“offer” message
includes IP address,
DNS server, “gateway
router”, and how long
client can have these
(“lease” time)

Attacker can race the actual
server; if they win, replace DNS

server and/or gateway router

27

• Substitute a fake DNS server
– Redirect any of a host’s lookups to a machine of

attacker’s choice

• Substitute a fake “gateway”
– Intercept all of a host’s off-subnet traffic

o (even if not preceded by a DNS lookup)
– Relay contents back and forth between host and

remote server
o Modify however attacker chooses

• An invisible “Person In The Middle” (PITM)
– Victim host has no way of knowing it’s happening

o (Can’t necessarily alarm on peculiarity of receiving multiple
DHCP replies, since that can happen benignly)

• How can we fix this?

DHCP Threats

28

Non-Eavesdropping Threats: DNS
• DHCP attacks show brutal power of attacker who

can eavesdrop
• Consider attackers who can’t eavesdrop - but still

aim to manipulate us via how protocols function
• DNS: path-critical for just about everything we do

– Maps hostnames ⇔ IP addresses
– Design only scales if we can minimize lookup traffic

o #1 way to do so: caching
o #2 way to do so: return not only answers to queries, but additional

info that will likely be needed shortly

• Directly interacting w/ DNS: dig program on Unix
– Allows querying of DNS system
– Dumps each field in DNS responses

29

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Use Unix “dig” utility to look up DNS
address (“A”) for hostname eecs.mit.edu

30

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

These are just comments from dig itself
with details of the request/response

31

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Transaction identifier

32

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Here the server echoes back the
question that it is answering

33

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Answer” tells us its address is 18.62.1.6 and
we can cache the result for 21,600 seconds

34

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Authority” tells us the name servers responsible for
the answer. Each record gives the hostname of a
different name server (“NS”) for names in mit.edu.
We should cache each record for 11,088 seconds.

35

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Additional” provides extra information to save us from
making separate lookups for it, or helps with bootstrapping.

Here, it tells us the IP addresses for the hostnames of the
name servers. We add these to our cache.

36

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:
eecs.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

What happens if the mit.edu server
returns the following to us instead?

37

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:
eecs.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

We dutifully store in our cache a mapping of
eecs.berkeley.edu to an IP address under
MIT’s control. (It could have been any IP
address they wanted, not just one of theirs.)

38

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:
eecs.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

In this case they chose to make the
mapping disappear after 30 seconds.
They could have made it persist for
weeks, or disappear even quicker.

39

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:
eecs.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

How do we fix such cache poisoning?

40

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:
eecs.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Don’t accept Additional records unless
they’re for the domain we’re looking up

E.g., looking up eecs.mit.edu ⇒ only accept
additional records from *.mit.edu

No extra risk in accepting these since server could
return them to us directly in an Answer anyway.

=

41

DNS Threats, conʼt

What about blind spoofing?

• Say we look up
mail.google.com; how can
an off-path attacker feed us a
bogus A answer before the
legitimate server replies?

• How can such an attacker
even know we are looking up
mail.google.com? Additional information

(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

<img	
 src="http://mail.google.com"	
 …>

42

DNS Blind Spoofing, conʼt

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

So this will be k+1

They observe ID k here<img	
 src="http://badguy.com"	
 …>
<img	
 src="http://mail.google.com"	
 …>

Originally, identification field
incremented by 1 for each
request. How does attacker
guess it?

Once they know we’re looking it
up, they just have to guess the
Identification field and reply
before legit server.

How hard is that?

Fix?

43

DNS Blind Spoofing, conʼt

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

Attacker can send lots of replies,
not just one …

However: once reply from legit
server arrives (with correct
Identification), it’s cached and no
more opportunity to poison it.
Victim is innoculated!

Once we randomize the
Identification, attacker has a
1/65536 chance of guessing it
correctly.
Are we pretty much safe?

Unless attacker can send
1000s of replies before legit
arrives, we’re likely safe -
phew! ?

44

DNS Blind Spoofing (Kaminsky 2008)
• Two key ideas:

–Spoof uses Additional field (rather than Answer)
–Attacker can get around caching of legit replies

by generating a series of different name lookups:

<img	
 src="http://random1.google.com"	
 …>
<img	
 src="http://random2.google.com"	
 …>
<img	
 src="http://random3.google.com"	
 …>

...
<img	
 src="http://randomN.google.com"	
 …>

45

;; QUESTION SECTION:
;randomk.google.com. IN A

;; ANSWER SECTION:
randomk.google.com 21600 IN A doesn’t	
 matter

;; AUTHORITY SECTION:
google.com. 11088 IN NS mail.google.com

;; ADDITIONAL SECTION:
mail.google.com 126738 IN A 6.6.6.6

Kaminsky Blind Spoofing, conʼt
For each lookup of randomk.google.com,
attacker returns a bunch of records like this,
each with a different Identifier

Once they win the race, not only have they poisoned
mail.google.com … but also the cached NS record for
google.com’s name server - so any future X.google.com
lookups go through the attacker’s machine

46

;; QUESTION SECTION:
;randomk.google.com. IN A

;; ANSWER SECTION:
randomk.google.com 21600 IN A doesn’t	
 matter

;; AUTHORITY SECTION:
google.com. 11088 IN NS mail.google.com

;; ADDITIONAL SECTION:
mail.google.com 126738 IN A 6.6.6.6

Kaminsky Blind Spoofing, conʼt
For each lookup of randomk.google.com,
attacker returns a bunch of records like this,
each with a different Identifier

Once they win the race, not only have they poisoned
mail.google.com … but also the cached NS record for
google.com’s name server - so any future X.google.com
lookups go through the attacker’s machine

Note: Itʼs not a matter of being lucky!

• The adversary know that all of these DNS requests
are generated

• It also knows that the Query IDS are
pseudorandomly generated.

• If it sees enough of these quickly enough, it can
determine the parameters of the pseudorandom
number generator!

• Then it knows what is coming next!

47

48

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bitsCentral problem: all that tells a
client they should accept a
response is that it matches the
Identification field.

With only 16 bits, it lacks
sufficient entropy: even if truly
random, the search space an
attacker must brute force is too
small.

Where can we get more entropy?
(Without requiring a protocol
change.)

49

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

DNS (primarily) uses UDP for
transport rather than TCP.

UDP header has:
 16-bit Source & Destination ports
 (identify processes, like w/ TCP)
 16-bit checksum, 16-bit length

 SRC port DST port

checksum length

16 bits 16 bits

UDP Payload

50

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

DNS (primarily) uses UDP for
transport rather than TCP.

UDP header has:
 16-bit Source & Destination ports
 (identify processes, like w/ TCP)
 16-bit checksum, 16-bit length

Src=53 Dest=53

checksum length

16 bits 16 bits

For requestor to receive DNS
reply, needs both correct
Identification and correct ports.

On a request, DST port = 53.
SRC port usually also 53 - but
not fundamental, just convenient

Total entropy: 16 bits

51

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

Src=rnd Dest=53

checksum length

16 bits 16 bits
“Fix”: use random source port

32 bits of entropy makes it orders
of magnitude harder for attacker
to guess all the necessary fields
and dupe victim into accepting
spoof response.

This is what primarily “secures”
DNS today. (Note: not all
resolvers have implemented
random source ports!)

Total entropy: 32 bits

52

• DHCP threats highlight:
– Broadcast protocols inherently at risk of attacker spoofing

o Attacker knows exactly when to try it
– When initializing, systems are particularly vulnerable because they

can lack a trusted foundation to build upon
– Tension between wiring in trust vs. flexibility/convenience
– PITM attacks insidious because no indicators they’re occurring

Summary of DHCP/DNS Security Issues

53

• DHCP threats highlight:
– Broadcast protocols inherently at risk of attacker spoofing

o Attacker knows exactly when to try it
– When initializing, systems are particularly vulnerable because they

can lack a trusted foundation to build upon
– Tension between wiring in trust vs. flexibility/convenience
– MITM attacks insidious because no indicators they’re occurring

• DNS threats highlight:
– Attackers can attack opportunistically rather than eavesdropping

o Cache poisoning only requires victim to look up some name under
attacker’s control

– Attackers can often manipulate victims into vulnerable activity
o E.g., IMG	
 SRC in web page to force DNS lookups

– Crucial for identifiers associated with communication to have
sufficient entropy (= a lot of bits of unpredictability)

– “Attacks only get better”: threats that appears technically remote
can become practical due to unforeseen cleverness

Summary of DHCP/DNS Security Issues

54

Questions?

