
CS 334 Computer Security Fall 2018

Project 1: Exploiting Code

Prof. Szajda Due Friday, September 21, 11:59:59 pm

In this project you will play the attacker’s role. You are given two vulnerable programs and you
will create exploits for them.

Getting Started

You will run the vulnerable programs and their exploits in a virtual machine (VM). VMware Fusion
is installed on the Macs in the Jepson 225 lab. If you wish to work on your own machines, VMware
Player is freely available for Windows and Linux, and VMware Fusion is available as a free 30-day
trial. The VM image that you will use is available off our course web page. The image is a bare-
bones Linux Ubuntu installation. There are two users, root and maluser. Both have the password
cs161proj. To use the image, start VMware Player, select Open a Virtual Machine and browse
to where you’ve stored the image. If it asks whether the VM was moved or copied, select I copied
it.

You will find the debugger gdb very useful for this project; it is worth spending some time becoming
comfortable with it. To start gdb with a program loaded, type

$ gdb <executable-name>

You can then start running the program with

$ run [arguments-to-the-executable]

Some useful commands are break, step, info frame, info locals, x <address>. If you’re brand
new to gdb it is worth going through a quick tutorial. A basic one is here:
http://www.cs.cmu.edu/ gilpin/tutorial/. If you need to remember the commands, a pretty
good reference can be found here:
http://www.yolinux.com/TUTRIALS/GDB-Commands.html.

Problems

1. (20 pts.) Buffer Overflow Vulnerability

In your VM image is the directory /home/maluser/Q1. This directory contains the files target-q1.c,
exploit-q1.c, Makefile, and shellcode.h. You will modify exploit-q1.c so that it exploits
target-q1. target-q1.c has already been compiled for you. The resulting program is owned by
root and has the setuid bit set. You should not need to recompile this file; the source is included
only so that you can inspect it to find the vulnerability.

To get started with this problem, you should review our notes on basic stack smashing, and use
“Smashing the Stack for Fun and Profit” by Aleph One as a reference. Your task is to exploit the
buffer overflow vulnerability in target-q1 to launch a shell. The malicious shell code is provided
shellcode.h; you have to cause it to be executed in target-q1. If you are successful, you will see

1

a root shell prompt:

maluser@cs161: /Q1$./exploit-q1

#

Typing exit at the prompt will take you back to your shell. The reason you see a root shell
is because target-q1 is owned by root and has the setuid bit set. Therefore, it runs with the
privileges of the file owner (root) and any program it launches (i.e. /bin/sh) will also run as root.

Deliverables for Problem 1: For this problem you will submit exploit-q1.c. I will log into
a clean VM image as maluser and download your submission file to directory /Q1. I will then
run make, will run ./exploit-q1, and will check for the existence of the shell prompt. The root
password on the VM I use will be different from the root password you were given. You should
also submit a file, exploit-q1.txt, which should include a description of the vulnerability, how
the vulnerability was exploited, the stack layout showing absolute locations of the variables you
had to be concerned about, and a brief description of your solution, including how you determined
which address to jump to. This document should be no more than one page.

2. (20 pts.) Format String Vulnerability

The second program you need to exploit is in the directory /home/maluser/Q2. The files in the
directory are target-q2.c, exploit-q2.c, and Makefile. You will modify exploit-q2.c so that
it exploits the vulnerable program target-q2.c. Again, target-q2.c has already been compiled,
is owned by root, and has the setuid bit set. You should not need to recompile this file; the source
is included only so that you can inspect it to find the vulnerability.

To get started with this problem, read “Exploiting Format String Vulnerabilities” by scut/team
teso (http://julianor.tripod.com/bc/formatstring-1.2.pdf). The vulnerable program, target-q2,
takes two arguments, username and userid. The first is a string, the second is an unsigned long.
The program uses the userid to determine who gets authenticated—however, you will find that the
target program has been written to not view any userid as having permission to authenticate. If
somehow a user gets authenticated, the program will delete a root-owned file, /root/grades2.txt.
Your task is to bypass the authentication check and get the program to delete the file for you.

Deliverables for Problem 2: For this problem you will submit exploit-q2.c. I will then check
your exploit as described above. Success will be determined by whether the file /root/grades2.txt
has been deleted. You should also submit a file, exploit-q2.txt which includes a description of
the vulnerability, how the vulnerability could be exploited, and a brief description of your solution,
including an explanation of how the arguments to target-q2 need to be structured. This document
should be no more than one page.

Submission Instructions: All deliverables for this project should be included in a single tar file.
The name of your tar file should be XXXProject1.tar, where XXX represents, in uppercase, the
first three letters of your last name. (Note well: If you submit an improperly named file, or submit
to the wrong box folder, I will treat it as if you have not submitted anything.)

You should submit your project by attaching the tar file to an email sent to the address

exploit.s0p9t9vh0asetjc6@u.box.com

This has the effect of dropping the tar file into the appropriate Box folders in my Box directory
tree.

2

Moving Files Between the VM and Local Host

Files can be moved between the vm and local host using scp. There are, however, a few things you
need to know to make this work. These are listed below.

1. You need to have turned on remote login in the VM, and enabled it for your local host
username.

2. When using scp, you need to know that both the vm and the local host run on the same
virtual local area network. So use the gateway address of the virtual OS when running
scp from within the virtual OS. If running from within the local host, you need to use the
username you use in the virtual machine (e.g., maluser) and need to use the full ip address,
not the gateway address.

So, to clarify, suppose the ip address in the virtual OS is listed as 192.168.202.129. You would
use this full IP address if running scp from terminal in the local host. But if running it from
terminal in the virtual OS, you would direct to the gateway address (typically the ip address
but with 1 as the least significant quad – here 192.168.202.1).

3. If you need to find the ip address of the virtual OS or of the local host, just run ifconfig in
a terminal in whatever location you need the ip address (vm or local host).

3

