
CS 332 Computer Networks Spring 2018

Project 3 — “Who” Directory Service

Assigned: February 26 Due: Friday, March 23, 5:00 p.m.

1 Introduction

In this project, you will write a “who” directory service. The who command in UNIX shows the users

logged in at a machine. Figure 1 shows a sample output from the CS server mathcs01.

The -H flag was used to generate the headings above the columns. The who command shows the set of

users who are logged in, on what UNIX terminal, when they logged in, and if not on the local machine, from

where they logged in. See who(1) for details if you like, but you won’t need them for this assignment.

Note that the who command only shows who is logged on this machine (there is also a rwho command for

checking who is logged in to a remote machine).

In this assignment, we will devise a protocol to list the set of users logged in not only on a single machine

but on a pre-defined set of machines. You will write a server that maintains a simple database of users logged

in to various machines.

It is obvious that for this to be of any practical use, the database needs to be updated periodically when

users log on and log off hosts. We will not worry about the database updates in this project. Instead, the set

of users will be kept in a static file, called “database.dat” that your server can use. (database.dat is provided

for you, so you can keep a copy in the directory where you code your server.)

In a nutshell, the protocol works as follows: the client queries the server with a hostname as the param-

eter. When the server gets the query, it looks in its database for the list of users who are logged onto that

machine. It then generates a packet which contains the list of users and their login times and sends it back

to the client.

In this assignment, the server and the client will communicate using the User Datagram Protocol (UDP).

UDP is an unreliable protocol, and unlike TCP, does not guarantee that the all of the data you send will show

up at the other end.

You will need to implement two new mechanisms:

• Re-transmissions from the client: Since data transfer in UDP is not reliable, you will need to create

a re-transmission mechanism in the client for queries that do not lead to response from the server.

• Checksum computation: To ensure that the data received at either end has not been corrupted in the

1

Figure 1: Screenshot showing output of who command on mathcs01

network, on receiving a packet from the network, you should first compute the checksum to see if the

data is correct. The server and client will silently ignore all corrupted packets.

2 Protocol Specification

The client will construct queries, containing a single hostname, and send them to the server. For each client

query, the server will search its internal database for that hostname, and send back a (possibly empty) list

of users logged on to that machine. The client is responsible for re-transmitting any query that gets lost or

corrupted in the network.

2.1 Packet Header

Both query and response packets have the same header structure shown below.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|Version|Type |X| Length | Query-Id |
+-+
| Checksum | Data |
+-+

2

...
+-+
| Data |
+-+

• Version (4bits) The version field is set to binary 0110 (0x6 if you prefer) for this project.

• Type (3 bits) The contents of the type field are:

– For Query packets: the type field should be 000 (binary)

– For Response packets: the type field should be 100 (binary)

• X (1 bit) This bit is set to zero in the query packets (i.e. packets from the clients to the server)

and set to one in the response packets if and only if the hostname is found in the server database.

If the hostname is not found in the database, then the X bit in the reply packet from the server is set

to 0. Note that it is possible for the hostname to be found, but there are no users logged on. In this

case, the X bit should still be set to 1, since the hostname was found in the database! This is necessary

because we want the client to be able to distinguish between the case of a bad hostname and the case

of a good hostname with no users.

• length This is an unsigned char value that represents the number of data items contained in a packet.

For a request packet, the length should be 1, since there is a single data item–the single hostname. For

response packets, the length field gives the number of users found on the requested host.

• Query-Id This is a randomly generated 16 bit number that the client uses to map server responses

to outstanding requests. The query-ID need not change on retransmitted packets.

• Checksum This is a ones-complement checksum of the entire packet, including header and data. The

checksum computation is also explained below.

• Data The format of the data field changes depending on the type of the packet.

– For the query packet the data just consists of the hostname as a string terminated by a null

character. We will not worry about the domain name of the hosts. Thus, the data part of a query

could be “mathcs02\0”.

– For the response packet, the data consists of a variable length list of {username,logintime}

pairs. The username is exactly eight characters long and the login time is an unsigned integer

of size 4 bytes. If the actual username is not eight characters, there should be an appropriate

number of NULL characters appended to the username to pad the username field so that it is 8

3

bytes long. There is no field separator between the username and login time—it’s not necessary

since each field is a fixed number of bytes.

The server will ignore any packet whose type it does not recognize. It will also ignore any packet that

contains a bad checksum. In general, both the server and the client will gracefully ignore ill-formed packets.

(I.e. an ill formed packet should not crash either the client or server.) Upon receiving a valid query (and

only in this case), the server will query its internal database for the information requested and will return

what it finds in the database.

Note: the server will (re-)construct a new packet with its answer. For queries for which the hostname is

listed in the database, but for which there are no users, the data part of the response packet is 0 bytes and the

X-bit is set to 1. For queries for which the hostname is not listed in the database, the X-bit of the response

packet is set to 0 (and of course the data part is 0 bytes). Of course, all of this was explained in the X bit

description, but I feel it needs reiterating. The client is responsible for mapping the answer to the original

query using the Query-Id.

2.2 Retransmission and Checksums

If the server does not reply within a pre-defined time period, the client will re-try its query. The server is

completely stateless, meaning that it does not remember which queries it has served, to whom it has served

them, and when it served them. If it receives the same query from the same client, the server will answer as

appropriate in response to each query.

Note: Clients must be able to disambiguate stale responses from the server. Thus, if a client gets a

response which does not match the query-id, it should ignore this response and not reset the retransmission

timer. In general, if the client receives a response that is bad in any way (i.e. bad checksum, packet is from

an address other than the server, the type field is incorrect, etc) the client drops the packet silently and does

not reset the retransmission timer. For example, if the retransmission interval is 4 seconds, and the client

receives a bad response 1.5 seconds later, it should act as if it never received the bad packet, and wait another

2.5 seconds to retransmit (unless it receives a good packet in the interim).

The checksum contained in both the query and the response is a ones-complement sum of all the contents

in the packet, computed just as the checksum is computed in an IP packet (see RFC 1071, or our class lecture

notes). Compute the checksum in the following manner:

• While sending a packet:

– Initialize the checksum field to 0x0

– Consider the entire packet as an array of 16 bit unsigned integers and compute the ones-complement

sum of the array (which is equivalent to an XOR). If there is a carryover (from bit 16), add one.

4

The result is put in the checksum field. Note that if the packet is an odd number of bytes long,

then a pad byte consisting of all zeros should be appended to the packet.

• When you receive a packet

– Run the algorithm above on the entire packet, including the checksum

– Accept the packet if and only if the resulting checksum is zero.

3 Deliverables

You will have to write both the server and the client for this assignment. I am providing you with binaries

of both a working server and a working client so that you can see the project in action and so that you have

programs with which you can debug both your client and server. Of course you can also use the StdoutE-

choServer for testing of individual messages. I am also providing you with the files Database.c (providing

database access functions – see below), database.dat (the database file), and WhoHeader.h, which you may

modify as you see fit. You will also want to include NetworkHeader.h, though I will not provide it since

you should already have one. Of course, you are expected to provide a README file, a Makefile, a testing

report, all of which should be included, with all the code, etc., in a single tar file called XXXProject3.tar,

where XXX is replaced by the first three letters, in uppercase, of your last name. Remember, that I should

be able to extract the contents of your tar file into an empty directory, build the executable, and run

without having to add any additional files. Thus you should include the database sources and other

code and headers provided in your tar file!

The command line arguments for the server and client are as follows:

• Server:

Project3Server -p 〈port〉 -d 〈database-file-name〉

– port : Port number at which server will run.

– database-file-name : Name of the database file name to use for host↔ { username, logintime }

map.

• Client:

Project3Client [-h 〈serverIP〉] [-p 〈port〉] -t 〈timeout〉 -i 〈max-retries〉

-d 〈hostname〉

– serverIP: IP address of the host on which the server is running.

– port: Port number at which server is running.

5

– timeout: Indicates in seconds, how long to wait before regenerating an unanswered query.

– max-retries: Indicates the number of times the client will re-generate the query, before it quits,

if no response is received from the server.

– hostname: This is a string that will form the data portion of the query. It should not be longer

than 64 bytes. It represents the hostname of the machine for which you would like to obtain user

information.

In the client, if the hostname and the port number of the server is not specified, the defaults from

NetworkHeader.h should be used.

4 Database Interface Functions

The server will query entries in the database using the following interface routines :

• void open database (char *file name);

The server should log an error and terminate if a database with the given name was not found.

• char **lookup user names (char *host name, int * no of entries);

The hostname is passed as an argument. This function returns an array of null terminated strings and

the number of users logged onto the machine is returned via no of entries. NULL is returned if

and only if the requested hostname is not found in the database. The strings are of the form “user-

name:logintime”. The login time represents a 32-bit integer that you should convert to an unsigned

int before passing back to the client.

• void close database (void);

Closes the database.

Note, in lookup user names the function will allocate space for these strings. Your program need

not free the space malloc-ed here, as it is done through the call to close database().

5 One Final Comment

This is the first assignment requiring concurrent programming. Specifically, to implement the timeout mech-

anism, some kind of alarm should be used, with the SIGALRM signal being used to indicate the event that

the retransmission timer expires. Since the SIGALRM signal is generated asynchronously, your client code

must be prepared to catch and properly handle the signal at any point during it’s execution, including times

when the client may be processing a packet, but before the packet has been determined to be “good”. See

6

the TCP/IP Sockets in C text sections on asynchronous I/O (Sections 6.2.2 and 6.2.3), and particularly on

the implementation of the timeout mechanism for a UDP echo client.

As with all of your projects, you are free to use any of the code in the TCP/IP Sockets in C text.

Remember, though, that you must be able to explain all part of your code to me. For example, if you use

non-blocking I/O, I expect that you realize that you are using non-blocking I/O, and that you can explain to

me both what it is and how your I/O code works!

6 Submission

Project must be submitted using the guidelines on the class web page. The name of the client and server

executables that your makefile builds should be Project3Client and Project3Server respectively.

Also, the name of your tar file should be XXXProject3.tar, where XXX represents, in uppercase, the first

three letters of your last name. IF YOU SUBMIT AN IMPROPERLY NAMED FILE, OR IMPROP-

ERLY NAMED SOURCE FILES, I WILL TREAT IT AS IF YOU HAVE NOT SUBMITTED ANY-

THING!!!! By now you know there is a text file, containing submission email addresses, in the content

section of the course Blackboard page. As always, you should submit your project by attaching the tar file

to an email sent to the appropriate address. This has the effect of dropping the tar file into one of my Box

folders.

7

