

CS 325 I - Computer Networks I: Security Protocols (I)

Professor Patrick Traynor 4/19/11 Lecture 26

Announcements

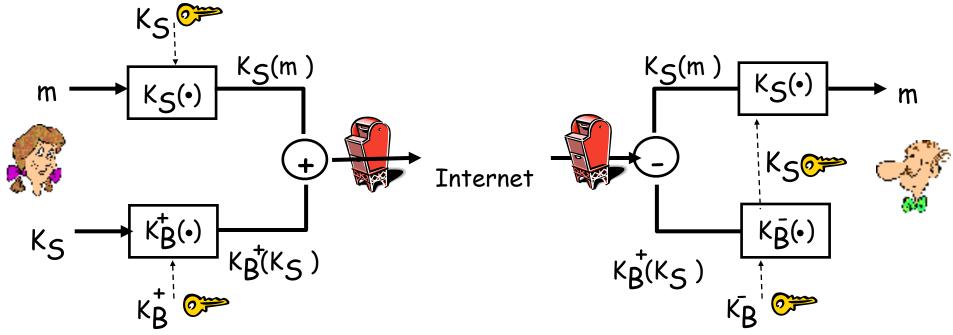
- Homework 3 is now late.
 - If you have not submitted it, you can still do so with the standard lateness penalties assessed.
- Project 4
 - Due Thursday at 5pm

Last Time

- Trying to prove who you are simply by saying your name is an example of ...?
- How are MACs and Digital Signatures Different?
 - What algorithms used to implement them?
- Diffie-Hellman key exchanges are vulnerable to what kind of attack?

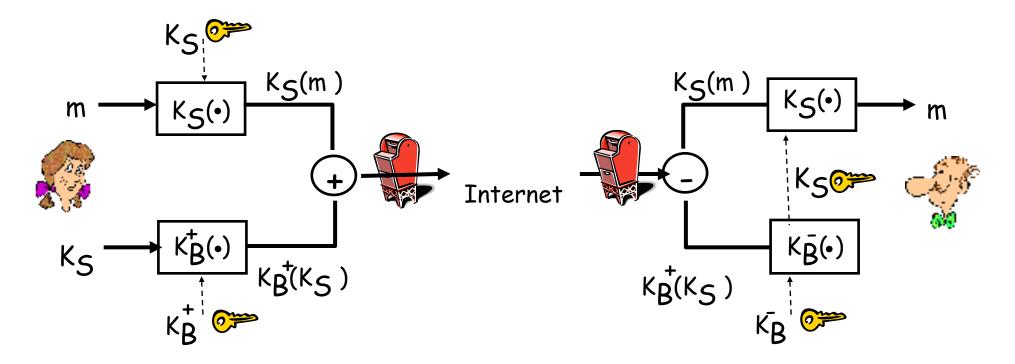
Chapter 8 roadmap

- 8.1 What is network security?
- 8.2 Principles of cryptography
- 8.3 Message Integrity
- 8.4 End point Authentication
- 8.5 Securing e-mail
- **8.6** Securing TCP connections: SSL
- 8.7 Network layer security: IPsec
- 8.8 Securing wireless LANs
- 8.9 Operational security: firewalls and IDS


Email Security

- Transmission is often not the only place crypto needs to be used to protect your email.
- Some system administrators, service providers and (if you're unlucky) law enforcement agencies read your email when it sits on the server.
 - e.g., GMail Advertisements
- How can you protect the confidentiality and integrity of your communications?

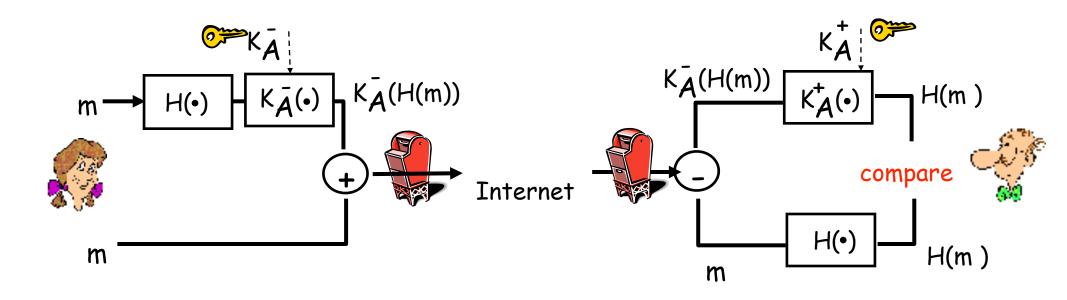
• Alice wants to send confidential e-mail, m, to Bob.



Alice:

- generates random symmetric private key, K_s.
- encrypts message with K_S (for efficiency)
- also encrypts K_s with Bob's public key.
- sends both $K_s(m)$ and $K_B(K_s)$ to Bob.

• Alice wants to send confidential e-mail, m, to Bob.

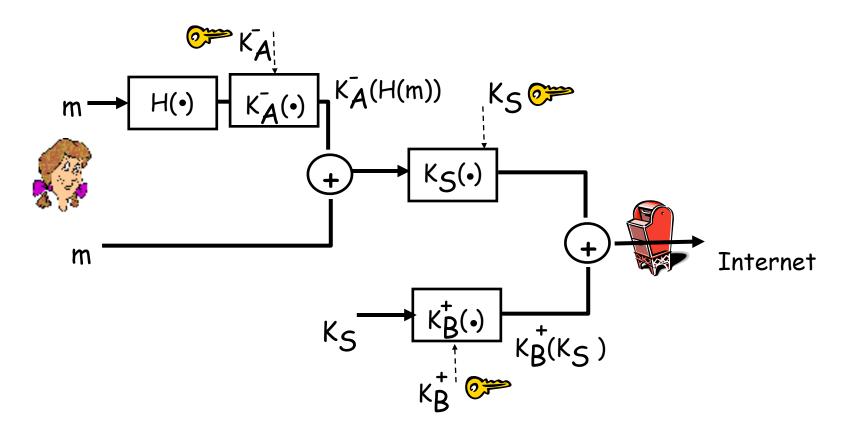


Bob:

- uses his private key to decrypt and recover K_s
- uses K_s to decrypt $K_s(m)$ to recover m

Secure e-mail (continued)

• Alice wants to provide sender authentication message integrity.



• sends both message (in the clear) and digital signature.

[•] Alice digitally signs message.

Secure e-mail (continued)

• Alice wants to provide secrecy, sender authentication, message integrity.

Alice uses three keys: her private key, Bob's public key, newly created symmetric key

Pretty good privacy (PGP)

- Internet e-mail encryption scheme, de-facto standard.
- uses symmetric key cryptography, public key cryptography, hash function, and digital signature as described.
- provides secrecy, sender authentication, integrity.
- inventor, Phil Zimmerman, was target of 3-year federal investigation.

A PGP signed message:

```
---BEGIN PGP SIGNED MESSAGE---
Hash: SHA1
```

```
Bob:My husband is out of town
tonight.Passionately yours, Alice
```

```
---BEGIN PGP SIGNATURE---
Version: PGP 5.0
Charset: noconv
yhHJRHhGJGhgg/12EpJ
+lo8gE4vB3mqJhFEvZP9t6n7G6m5Gw2
---END PGP SIGNATURE---
```

pgp.mit.edu

PGP: A Web of Trust

- Instead of relying on a CA, PGP uses social relationships to verify a key.
 - If you know a friend of mine and they signed my key (and you can verify their signature), you are more likely to believe the key belongs to me.

pub 1024D/48675CEA 2006-10-19

uid Patrick Traynor <traynor@cc.gatech.edu></traynor@cc.gatech.edu>				
sig	sig3	4B675CEA 2008-09-15		[selfsig]
sig	sig	291D61FD 2008-09-26		Frank Park <frank@gatech.edu></frank@gatech.edu>
-	-			
uid Patrick Gerard Traynor <traynor@cse.psu.edu></traynor@cse.psu.edu>				
sig	sig3	4B675CEA 2006-10-19	2008-10-18	[selfsig]
sig	sig	E6A5C618 2006-10-19		William Enck <enck@cse.psu.edu></enck@cse.psu.edu>
sig	sig	2D18BAD7 2006-10-19		William Enck <enck@cse.psu.edu> William Enck <wenck@psu.edu></wenck@psu.edu></enck@cse.psu.edu>
sig	sig	6076BF43 2006-10-19		Luke St.Clair <istclair@cse.psu.edu></istclair@cse.psu.edu>
sig	sig	<u>3A4CC3BA</u> 2007-03-26		Joshua Schiffman (Sycrim) <jschiffm@cse.psu.edu></jschiffm@cse.psu.edu>
sig	sig	78075A3E 2007-06-26		Kevin Butler dutler@cse.psu.edu>
sig	sig	D44736F4 2007-10-30		yogesh raju sreenivasan (first gpg key) <sreeniva@cse.psu.edu></sreeniva@cse.psu.edu>
sig	sig	D127450E 2007-10-30		Lisa Johansen <johansen@cse.psu.edu></johansen@cse.psu.edu>
sig	sig	6C2900BD 2007-10-30		Stephen McLaughlin (.) <smclaugh@cse.psu.edu></smclaugh@cse.psu.edu>
sig	sig	F7EE6984 2007-11-03		Sandra Rueda (Sandra Julieta Rueda Rodriguez) <ruedarod@cse.psu.edu></ruedarod@cse.psu.edu>
sig	sig	33103478 2007-11-06		Boniface Hicks (monk, priest, computer science professor) <phicks@cse.psu.edu></phicks@cse.psu.edu>
	sig	17F0F537 2008-05-06		Thomas Moyer <tmmoyer@cse.psu.edu></tmmoyer@cse.psu.edu>
sig	sig3	4B675CEA 2008-05-16		[selfsig]
		039F0522 2008-09-26		Italo Dacosta <idacosta@gatech.edu></idacosta@gatech.edu>
sig	sig	039F0522 2008-09-26		Italo Dacosta <idacosta@gatech.edu></idacosta@gatech.edu>
sig	sig	4FB3AE73 2008-09-27		Chaitrali <to.chaitrali@gmail.com></to.chaitrali@gmail.com>
sig	sig	4FB3AE73 2008-09-27		Chaitrali <to.chaitrali@gmail.com></to.chaitrali@gmail.com>
sig	sig	0371D9B3 2008-10-01		Michael Hunter <mhunter@cc.gatech.edu></mhunter@cc.gatech.edu>
sig	sig	0371D9B3 2008-10-01		Michael Hunter <mhunter@cc.gatech.edu></mhunter@cc.gatech.edu>
		9B952FFF 2009-01-30		Lalanthika Vasudevan <lalanthika.v€gatech.edu></lalanthika.v€gatech.edu>
-	-			
uid Patrick Gerard Traynor <traynor@cc.gatech.edu></traynor@cc.gatech.edu>				
sig	sig3	4B675CEA 2008-07-08		[selfsig]
sig	sig	039F0522 2008-09-26		Italo Dacosta <idacosta@gatech.edu></idacosta@gatech.edu>
sig	sig	4FB3AE73 2008-09-27		Chaitrali <to.chaitrali@gmail.com></to.chaitrali@gmail.com>
sig	sig	0371D9B3 2008-10-01		Michael Hunter <mhunter@cc.gatech.edu></mhunter@cc.gatech.edu>
sig	sig	9B952FFF 2009-01-30		Lalanthika Vasudevan <lalanthika.v@gatech.edu></lalanthika.v@gatech.edu>
-	-			

sub 2048a/c0999E7c 2006_10_19

Using PGP

- For Mac users, download MacGPG. Windows users should get GPG4win. Linux users can download GPG.
 - These are all free versions of PGP based on RFC4880.
- From the command-line:
 - gpg -c filename.txt (encrypt a file using a symmetric key generated from a passphrase)
 - gpg -e filename.txt (encrypt a file using the public key of the intended reader).

Public Key

-----BEGIN PGP PUBLIC KEY BLOCK-----Version: SKS 1.1.0

mQGiBEU3fUwRBADkfQiDpTiW8KN/Leys4XUTrQDwBqtwqTXJXcHQCUlDV9mJ60PxDAuEguY5 lbjPwi/nVQ225t1NXCkaBzvyJq/8xIUwn7i+hsHHvlgg1f7dSFSt7aqCaqCkNkuTrPwnB609 A1SSkYDA24Kt5TgsoDG3bMqvi6FNIGjZRdeaf7H6+wCg7w4YMtqio26Aa9Hs71nVa7LQAPUD +wQbK1pCoA217y5UFShQRtvF0PHwDxAIMUQjr34YmysTr5tVSwkckf9a0UoaNgF9H/K36ri0 /eu8K43QOD8BIdm2npqk/Q/zckCaw2fLsihTFZivlqVT3ho3iQlNbd06BaD5eQEJ7svR/5Ro 069N3NOBYS47erpDtCRruWh4Z+89A/4y7aAV1BDrVkQXYokjXdvT4yiN6RUNiCxJIpb1BebB VPzx+FK94L/idT3zbwWbkALuGIJkN/IKNfwnpDMKqmP2aMr9G4AuRF0XGiF00bVjkloEvqqQ loZ5FFalSaImeCWydlevajHhb5PXFLzkRndH/6wG2SbWpn12FlfHRkpTBLQnUGF0cmljayBU cmF5bm9yIDx0cmF5bm9yQGNjLmdhdGVjaC512HU+iEYEEBECAAYFAkjdQx4ACgkQCjNKhSkd Yf0n4wCfeseyLBckAluqUiD6uvh3wQfRLQUAn0tmD42+P1++xhdXQ6gP8dRVyd4/iGAEExEC ACAFAkjOttwCGwMGCwkIBwMCBBUCCAMEFgIDAQIeAQIXgAAKCRD3JVd7S2dc6oTDAKCBXw+e MoaU/T9uF5eJDBnP/FjMZQCgibbpCBQ2fEpUMUf8Rok2Lj9uovi0LFBhdHJpY2sgR2VyYXJk IFRyYX1ub3IgPHRyYX1ub3JAY3N1LnBzdS51ZHU+iEYEEBECAAYFAkU3fzwACgkQGrKJXOa1 xhioAgCffnuRbO/SZK7LdfZUjFj3F2oEJGcAoOERnKWB9/7994otrCM5xhqtutRqiEYEEBEC AAYFAkU3f2wACgkQYI7uTi0YutcYMACeKQK2nPmXnFrc7eOwZWbX4GUMcJkAnjTOXRv5nvDg Z5wORuIhTepZ4VTBiEYEEBECAAYFAkYIXNIACgkQr5A0jDpMw7ppWgCeMl2+IH1QpjhX7ZNL 8oj8NqgxwBIAnAzmz5qgApaeXc30hzvqWEE3t4jNiEYEEBECAAYFAkaBTLsACgkQnXLg9HgH Wj592QCdGnRYZV6hZ2ayy+alUiZdL3w4+WgAoJTEAaqyAlWuPs9znfyPwJxm5q5liEYEEBEC AAYFAkcnO24ACgkOtwxrN9RHNvRRWwCeINX9XHd7kkNAvCgkXXoTnH/AUHEAn331bjjWYgvE 1r3x8aZ4qkb9NANciEYEEBECAAYFAkcnPS0ACgkQJ0tTE9EnRQ6WwwCffKP67MDZPwzRpd0L wyUkkMjGOAMAnRywKK3yROY6FdHt2bvUWFa+NyEwiEYEEBECAAYFAkcnbgsACgkQIyPVYGwp AL2CRACfcyjK+a8tikTBBWTJy4YxBTAJvecAn0K00BTnM0zROXPzmmlYQwdaEA3biEYEEBEC AAYFAkcs7ZUACgkQqSJqhPfuaYTsgQCgn3Kf4qZGSBHynDikwNxUtTfDwiYAn0/I304rCTEP xzTqZ62AsToUBZcQiEYEEBECAAYFAkcv0nQACgkQIArE1zMQNHhULQCgts0t1ZoRQQU/LKL4 DMmrzDk3Y34AoMSMdfvOsSffpl0a5MWY78RBSOFyiEYEEBECAAYFAkggm60ACgkQa7Yypxfw 9TfrDgCfRxfSEiGq9Mv9V/ybKVyYdQvfJvUAnRg2wMqvDJixS9bKaqUDQRz60BJGiEYEEBEC AAYFAkjdTSoACgkQ/7xgkQOfBSJu3wCfR1fZkpF2n94mkJI+gfsyGNz5tR0An1Xj1jnntN8H ttpJU7HrfrsXsx88iEYEEBECAAYFAkjdTTgACgkQ/7xgkQOfBSKqpQCghmCoKFunCD6n+5P8 ffsvzGCg/t8AnjesVVtagCDbD2YYUUju3tH0/kDLiEYEEBECAAYFAkjdib4ACgkOBLzC7k+z rnP+AwCdFn0tsBDfbXMqFJSPb/j0B8ANaaQAnR/LD2hNz+7yI4BnPc8XbyDHR0jxiEYEEBEC AAYFAkjdicYACgkQBLzC7k+zrnNlFgCePQmblHq/eftpUQk0yjBwUt4YuVMAoLdxDAIkehN7 dBPeTM0HHciewVVDiEYEEBECAAYFAkjjsNAACgkQ/547KQNx2bPD0ACcC+FlhVpLico2im0g BtD3wdA+rTgAn1uHIdQTRWY0C0027GJT6HdA3usaiEYEEBECAAYFAkjjsNAACgkQ/547KQNx 2bPWcQCeL0oKn8MQ31kaehWWgp8EO7v/X90An1sFCc7W9Zma+xcyT30M5N79XanMiEYEEBEC AAYFAkmDgOoACgkQSj2B0puVL/9EAQCgtHi8+1QoTqflToiblCv8A0kb8PgAoOnUH5FWP/B4 Dn7v/T+Yd0vgGdyPiEkEEBECAAkFAkU3g5UCBwAACgkQwyk8VmB2v0PwiwCeN4aFN+f0Eepz 8Pr3pG3Pcp5/SSkAn0LSXA0tLXheTny0RkAqSjbIjcyiiGAEExECACACGwMGCwkIBwMCBBUC CAMEFgIDAQIeAQIXgAUCSC2ZWwAKCRD3JVd7S2dc6kTQAJwOHRTbgwq9V+nx4a1/43/+3tYt qQCfTUb0qwf0U/tHr/FTxr8GC12w9ciIZgQTEQIAJgUCRTd9TAIbAwUJA8JnAAYLCQgHAwIE FQIIAwQWAgMBAh4BAheAAAoJEPclV3tLZ1zqalgAoMKUbkHZqKkb83r+m5GKuI+Hs6YeAKDh kHah0MioxXwc8Yge1BiQu0XwmrQuUGF0cmljayBHZXJhcmQgVHJheW5vciA8dHJheW5vckBj Yy5nYXR1Y2guZWR1PohGBBARAgAGBQJI3U0gAAoJEP+8YJEDnwUibt8An0dX2ZKRdp/eJpCS PoH7Mhjc+bUdAJ9V45Y557TfB7baSVOx6367F7MfPIhGBBARAgAGBQJI3Ym+AAoJEAS8wu5P s65z/gMAnRZ9LbAQ321zKhSUj2/49AfADWmkAJ0fyw9oTc/u8iOAZz3PF28gx0d18YhGBBAR AgAGBQJI47DQAAoJEP+eOykDcdmz1nEAni9KCp/DEN5ZGnoVloKfBDu7/1/dAJ9bBQnO1vWZ mvsXMk9zjOTe/V2pzIhGBBARAgAGBQJJg4DlAAoJEEo9gdKblS//m34AoJ4af/wySOlXKjBH $\tt lGe7U4BYNK1UAKDoapEiSfYzxuy2vaHQGoo4QmG/oYhgBBMRAgAgBQJIc+nwAhsDBgsJCAcD$ AgQVAggDBBYCAwECHgECF4AACgkQ9yVXe0tnXOqgfACg7jJ71HKMVmHphkXVjH9LaKTBm+0A mwROF1mKOF1UB5bvJg4e3gyACpE1uQINBEU3fY0QCADxjApA2rmjH4JuTrnEwP/GNp+UrYsV 0cyrXhNdnwtV4+L+M7tKmeTy+8SCfJRm8igQL8RNZrhtQenAVNGFEsQTyJPHOrKADxvX39G0 mx2cwQ9T4Bh4dfTNx2vmtWsGI0A18ArlyRViifoTy1LcmU787T6Rq9nEG6FyCiaPMUtYeEv1 hnyDoKtDLD63aMJj5b4aojZUDx06A1gm96JT3fVPMqEa83sQ5f6f2zQ9kvhzrY9npOn0ySVa vQx5NRRqn1jLP+j2lGI4QuR5696ING+upReXGJ3bBXuL/dr8vC9cUmz0j4zoWDN/WdwVIZWH uvFX/3F0w91mYzLM6pS7QW/LAAMFCADOLo+EgzYarRVa2IpaBTk9D4a81csp9+7vb9UmMhA/ 6MHoPnKjd1kzmnY8Ki7j0hoU2F6i47PVzi2CNT2g2S2HwBGMMwmLtbpXUD3eqz7NuCuSiwc6 uEBnnNoFukjVKLn7WtpeGC0+jTtNz7gEIvh4xe1MP2GL9xs1wjjN3///1Sq80fYf7pwAzb30 f1P0LSoQcCT3XrxtqaOCBH1VzpcgmWJw6Ze5I4zRbrG+jPTWd3STqUlcZmA12ap/zsuigI4M bk+vdL50QYG89bmxlbrnf+2Oh+pqf2nK3UJpcCs+OMbSb4HfWnfcxuUndpMqItRWHfdjlt2/ aBQQFp254jhWiEkEGBECAAkCGwwFAkqtmbUACqkQ9yVXe0tnXOpF2QCeLFSB74jvUbqjYXBj MyKrjQdPf98AoLvsfjgPwqW5kEKNn73xBbSbEQxAiE8EGBECAA8FAkU3fY0CGwwFCQPCZwAA CgkQ9yVXe0tnXOpa3QCgvqKU8ti9D0vmQAhpIS1+pP8bAkYAn1C/uXo90mGo5OouuEKsUf1F e+e+

=6BWu

-----END PGP PUBLIC KEY BLOCK-----

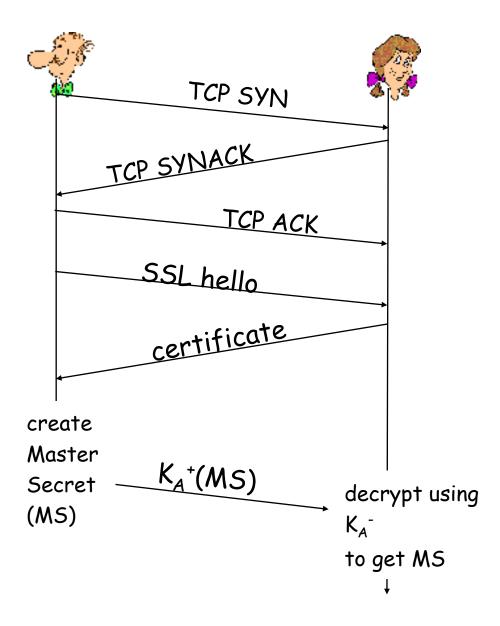
Chapter 8 roadmap

- 8.1 What is network security?
- 8.2 Principles of cryptography
- 8.3 Message Integrity
- 8.4 End point Authentication
- 8.5 Securing e-mail
- 8.6 Securing TCP connections: SSL
- 8.7 Network layer security: IPsec
- 8.8 Securing wireless LANs
- 8.9 Operational security: firewalls and IDS

How do we get secure communications?

- We now have an idea of how cryptographic algorithms work (and what they try to guarantee).
- We also know how to ensure integrity of our communications.
- How do we actually use this stuff?
 - Are we using it on a daily basis?

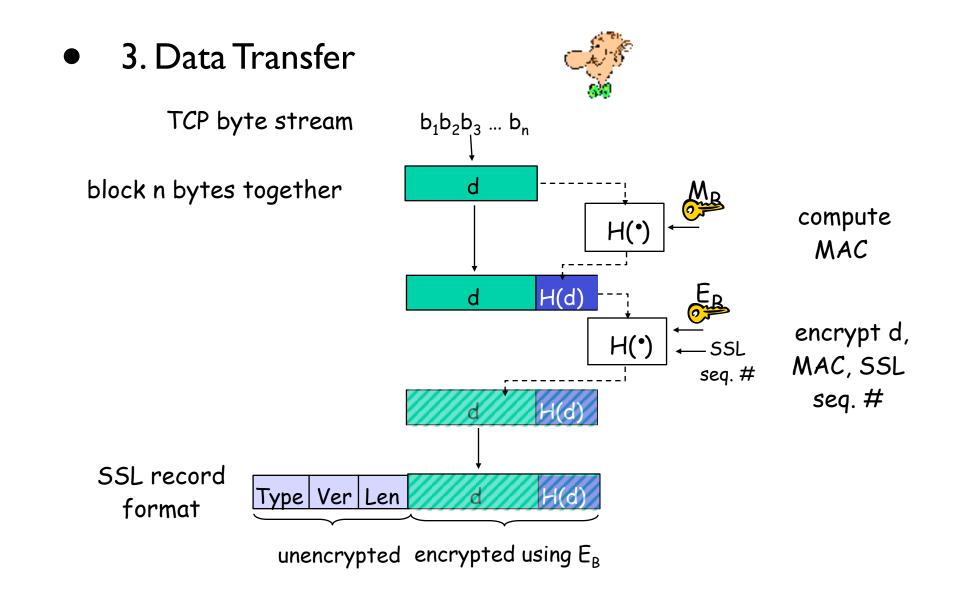
Secure Sockets Layer (SSL)


- Provides transport layer security to any TCP-based application using SSL services.
 - e.g., between Web browsers, servers for e-commerce (https)
- security services:
 - server authentication, data encryption, client authentication (optional)

SSL: Three Phases

- I. Handshake:
 - Bob establishes TCP connection to Alice
 - authenticates Alice via CA signed certificate
 - creates, encrypts

 (using Alice's public
 key), sends master
 secret key to Alice
 - nonce exchange not shown



SSL: Three Phases

- 2. Key Derivation:
 - Alice, Bob use shared secret (MS) to generate 4 keys:
 - E_B: Bob->Alice data encryption key
 - E_A:Alice->Bob data encryption key
 - M_B: Bob->Alice MAC key
 - M_A:Alice->Bob MAC key
 - encryption and MAC algorithms negotiable between Bob, Alice
 - why 4 keys?

SSL: Three Phases

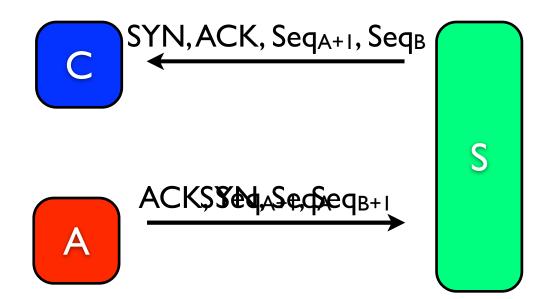
What does that little lock mean?

- What does this lock actually mean?
 - Are you secure?
- It really depends...
 - Some websites used negotiate the use of the "null cipher".
 - So even with the lock icon, no crypto was being used.
 - Attackers can launch SSL downgrade attacks against older browsers.
 - Commonly misspelled websites might make you think you are connected securely to the right page.

Steve Bellovin

- Long time researcher at AT&T Research/Bell Labs.
 - Member of the National Academy of Engineering
 - Professor at Columbia University
- Credited as one of the "Fathers of the firewall"
- One of the originators of USENET
 - The precursor to World Wide Web, allowed people to view and exchange content in newsgroups.

Security Problems in the TCP/IP Protocol Suite


- This is one of the classics of Network Security literature.
- Although written in 1989, many of the protocols discussed here are still widely used today.
- This is a nice overview of why security research is necessary.
 - It is hard to build secure systems when the infrastructure supporting them was never designed to consider security.
 - Attacks on specific implementations not discussed.
 - Three general attack categories: TCP/IP Attacks, Routing Attacks, and Abusing Common Protocols.

TCP/IP Sequence Number Guessing

- TCP connects are established by the 3-way handshake:
 - What do the three messages look like?
- Each client keeps a unique sequence number to order packets and prevent against loss.
- An attacker can spoof an IP address, but attempting to carry out a conversation when you don't know the correct responses is hard.
 - If you can guess the response, you can establish a connection.

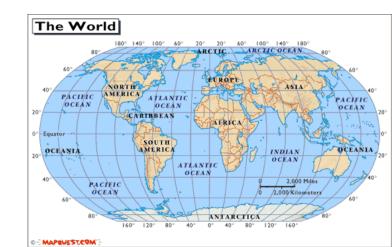
How This Attack Works

What Can You Do With This?

- On Christmas Day 1994, Kevin Mitnick used this attack to break into Tsuomo Shimamura's machine.
 - Claimed to be from a "trusted" IP address, added himself to rhosts file, gained full access.
- Unfortunately for Mitnick, Tsutomu Shimomura caught him in the act (saw the logs).
- Ultimately, this incident helped the FBI track down and arrest Mitnick in Raleigh, NC.

Defense Against SNG Attack

- Make the initial sequence number hard to guess.
 - Most systems now use a PRNG, but they're not great.
 - Most implementations of TCP will accept RST packets with a sequence number anywhere within their window.
 - For a 32Kb window, 2^{17} attempts is enough to get it right.
- Actively monitor your logs.
 - But you need to be on top of this as an attacker is likely to delete or modify them once they get access.



Class Exercise

- One way to make such attacks far more difficult is to make guessing an initial sequence number totally improbable to guess.
- Take 5 minutes and modify the 3-way handshake of TCP to make it more resistant to such an attack.
 - Can you incorporate a puzzle or something hard to calculate?

Real-World Routing Attacks

- AS7007 (1997)
- YouTube hijacked by Pakistan (2008)

CS 3251 - Computer Networks I

ICMP Attacks

- Examples
 - ICMP Redirect
 - ICMP Destination Unreachable
 - ICMP Time to Live Exceeded
- Defense
 - Filtering

Other Protocols

• Finger

- Directory-like service.
- Can this help with identity theft? Password cracking?
- Electronic Mail
 - We have already shown how to spoof email.
 - Until recently, even retrieving mail from your server used cleartext passwords.

Other Protocols (2)

• DNS

- Sequence number guessing and response spoofing thought to be potentially serious attacks in 1989.
- These are major issues today... why?
- ARP
 - A local attacker could similarly siphon off all your traffic.

General Defenses

- Authentication
 - Authentication by assertion repeatedly gets us into trouble.
 - Why do we still do it?
- Encryption
 - End-to-End
 - Link-layer

Conclusions

- IP addresses are meaningless as an authentication token.
- Use random numbers whenever knowledge of that number may open your system to attack.
- The core of the network is based on algorithms that fall over pretty easily, making the Internet very fragile.

Next Time

• Read Chapter 8.7 - 8.9

- Project 4 is looming...
 - Remember, not being able to get it to work the night before it is due is a problem of bad time management.

