CS 332 Computer Networks Link Layer(2)

Professor Szajda

Last Time

- What is EDC? How does it work?
- Why do we use different EDC techniques at the link layer than are used at higher layers?
- Why does slotted ALOHA have higher efficiency than ALOHA?
- What is CSMA? How is it different than CSMA/CD?

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3Multiple access protocols
- 5.4 Link-Layer Addressing
- 5.5 Ethernet

- 5.6 Hubs and switches
- 5.7 PPP
- 5.8 Link Virtualization: ATM

MAC Addresses and ARP

- 32-bit IP address:
 - network-layer address
 - used to get datagram to destination IP subnet
- MAC (or LAN or physical or Ethernet) address:
 - used to get frame from one interface to another physicallyconnected interface (same network)
 - 48 bit MAC address (for most LANs) burned in the adapter ROM

LAN Addresses and ARP

Each adapter on LAN has unique LAN address

LAN Address (more)

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- Analogy:
 - (a) MAC address: like Social Security Number
 - (b) IP address: like postal address
- MAC flat address → portability
 - can move LAN card from one LAN to another
- IP hierarchical address NOT portable
 - depends on IP subnet to which node is attached

ARP: Address Resolution Protocol

Question: how to determine MAC address of B knowing B's IP address?

- Each IP node (Host, Router) on LAN has ARP table
- ARP Table: IP/MAC address mappings for some LAN nodes
 - < IP address; MAC address; TTL>
 - TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

ARP protocol: Same LAN (network)

- A wants to send datagram to B, and B's MAC address not in A's ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - Dest MAC address = FF-FF-FF-FF-FF
 - all machines on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A's MAC address (unicast)

- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed
- ARP is "plug-and-play":
 - nodes create their ARP tables without intervention from net administrator

Routing to another LAN

walkthrough: send datagram from A to B via R (assume A know's B IP address)

- Two ARP tables in router R, one for each IP network (LAN)
- In routing table at source Host, find router 111.111.111.110
- In ARP table at source, find MAC address E6-E9-00-17-BB-4B, etc

Procedure

- A creates datagram with source A, destination B
- A uses ARP to get R's MAC address for 111.111.111.110
- A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram
- A's adapter sends frame
- R's adapter receives frame
- R removes IP datagram from Ethernet frame, sees its destined to B
- R uses ARP to get B's MAC address
- R creates frame containing A-to-B IP datagram sends to B

ARP Spoofing/Poisoning

- ARP relies on "authentication by assertion".
 - Anyone who claims to know the mapping between IP/MAC addresses is always right.
- When someone requests an address mapping resolution, the attacker responds by injecting some other value (e.g., theirs).
- What can you do by lying about an address?

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3Multiple access protocols
- 5.4 Link-Layer Addressing
- 5.5 Ethernet

- 5.6 Hubs and switches
- 5.7 PPP
- 5.8 Link Virtualization: ATM

Ethernet

"Dominant" wired LAN technology:

- cheap \$20 for 100Mbs!
- first widely used LAN technology
- Simpler, cheaper than token LANs and ATM
- Kept up with speed race: 10 Mbps 10 Gbps

Metcalfe's Ethernet sketch

Pieces of History

- Original Ethernet connected by 10Base5 cable
 - The "yellow garden hose" of networking
- Markings every 2.5 meters for "vampire taps"
 - Difficult to install

- With long pieces of wire connecting multiple machines, a single error (cable break, bad tap, loose connector) can mean trouble for everyone.
 - How long does a garden hose last before a leak occurs?
- You can determine the location of these errors by sending a special message across the wire and timing its echo.
- This technique is known as "Time Domain Reflectometry"

Star topology

- bus topology popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
- today: star topology prevails
 - active switch in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble:

- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver, sender clock rates
 - a lecture on manchester encoding,etc will come later...

Ethernet Frame Structure (more)

• Addresses: 6 bytes

- if adapter receives frame with matching destination address, or with broadcast address (eg ARP packet), it passes data in frame to net-layer protocol
- otherwise, adapter discards frame
- Type: indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)
- CRC: checked at receiver, if error is detected, the frame is simply dropped

Unreliable, connectionless service

- Connectionless: No handshaking between sending and receiving adapter.
- Unreliable: receiving adapter doesn't send acks or nacks to sending adapter
 - stream of datagrams passed to network layer can have gaps (missing datagrams)
 - gaps will be filled if app is using TCP
 - otherwise, app will see the gaps
- Ethernet's MAC protocol: unslotted CSMA/CD

Ethernet CSMA/CD algorithm

- I.Adaptor receives datagram from net layer & creates frame
- 2. If adapter senses channel idle, it starts to transmit frame. If it senses channel busy, waits until channel idle and then transmits
- 3. If adapter transmits entire frame without detecting another transmission, the adapter is done with frame !

- If adapter detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, adapter enters exponential backoff: after the mth collision, adapter chooses a K at random from {0,1,2,...,2^m-1}. Adapter waits K-512 bit times and returns to Step 2

Ethernet's CSMA/CD (more)

Jam Signal: make sure all other transmitters are aware of collision; 48 bits

Bit time: .1 microsec for 10 Mbps Ethernet ; for K=1023, wait time is about 50 msec

See/interact with Java applet on AWL Web site: highly recommended !

Exponential Backoff:

- Goal: adapt retransmission attempts to estimated current load
 - heavy load: random wait will be longer
- first collision: choose K
 from {0,1}; delay is K · 512
 bit transmission times
- after second collision: choose K from {0,1,2,3}...
- after ten collisions, choose
 K from {0,1,2,3,4,...,1023}

CSMA/CD efficiency

- T_{prop} = max prop between 2 nodes in LAN
- t_{trans} = time to transmit max-size frame

efficiency =
$$\frac{1}{1 + 5t_{prop} / t_{trans}}$$

- efficiency goes to I
 - as t_{prop} goes to 0
 - as t_{trans} goes to infinity
- better performance than ALOHA: and simple, cheap, decentralized!

802.3 Ethernet Standards: Link

- many different Ethernet standards
 - common MAC protocol and frame format
 - different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps
 - different physical layer media: fiber, cable

Gbit Ethernet

- uses standard Ethernet frame format
- allows for point-to-point links and shared broadcast channels
- in shared mode, CSMA/CD is used; short distances between nodes required for efficiency
- uses hubs, called here "Buffered Distributors"
- Full-Duplex at I Gbps for point-to-point links
- 10 Gbps now !

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3Multiple access protocols
- 5.4 Link-Layer Addressing
- 5.5 Ethernet

- 5.6 Interconnections: Hubs and switches
- 5.7 PPP
- 5.8 Link Virtualization: ATM

Hubs

- ... physical-layer ("dumb") repeaters:
 - bits coming in one link go out all other links at same rate
 - all nodes connected to hub can collide with one another
 - no frame buffering
 - no CSMA/CD at hub: host NICs detect collisions

Switch

- Ink-layer device: smarter than hubs, take active role
 - store, forward Ethernet frames
 - examine incoming frame's MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment
- transparent
 - hosts are unaware of presence of switches
- plug-and-play, self-learning
 - switches do not need to be configured

Switch: Multiple Transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
 - each link is its own collision domain
- switching: A-to-A' and B-to-B' simultaneously, without collisions
 - not possible with dumb hub

switch with six interfaces (1,2,3,4,5,6)

Switch Table

- Q: how does switch know that A' reachable via interface 4, B' reachable via interface 5?
- A: each switch has a switch table, each entry:
 - (MAC address of host, interface to reach host, time stamp)
- Iooks like a routing table!
- Q: how are entries created, maintained in switch table?
 - something like a routing protocol?

Self learning

- switch learns which hosts can be reached through which interfaces
 - when frame received, switch "learns" location of sender: incoming LAN segment
 - records sender/location pair in switch table

A'

MAC addr	interface	TTL
A	1	60

B'

Switch table (initially empty)

Filtering/Forwarding

When switch receives a frame:

- I. record link associated with sending host
- 2. index switch table using MAC dest address
- 3 if entry found for destination
 then{
 - if dest on segment from which frame arrived then drop the frame

else forward the frame on interface indicated forward on all but the interface on which the frame arrived

}

Self-Learning, Forwarding: Example

- Frame Destination unknown: flood
- Destination A location known: selective send

MAC addr	interface	TTL
A A'	1 4	60 60

Switch table (initially empty)

Interconnecting Switches

• Switches can be connected together

- Q: sending from A to G how does SI know to forward frame destined to F via S4 and S3?
- A: self learning! (works exactly the same as in singleswitch case!)

Switch example

Suppose C sends frame to D

- Switch receives frame from from C
 - notes in bridge table that C is on interface I
 - because D is not in table, switch forwards frame into interfaces 2 and 3
- frame received by D

Switch example

Suppose D replies back with frame to C.

- Switch receives frame from from D
 - notes in bridge table that D is on interface 2
 - because C is in table, switch forwards frame only to interface I
- frame received by C

More on Switches

- cut-through switching: frame forwarded from input to output port without first collecting entire frame
 - slight reduction in latency
- combinations of shared/dedicated, 10/100/1000 Mbps interfaces

Institutional Network

Switches vs. Routers

- both store-and-forward devices
 - routers: network layer devices (examine network layer headers)
 - switches are link layer devices
- routers maintain routing tables, implement routing algorithms
- switches maintain switch tables, implement filtering, learning algorithms

	<u>hubs</u>	<u>routers</u>	<u>switches</u>
traffic isolation	no	yes	yes
plug & play	yes	no	yes
optimal routing	no	yes	no
cut through	yes	no	yes