CMSC 332

Computer Networks
TCP: Congestion
Control

Professor Szajda

Announcements

® Project 2 has been posted. It will take time

» Form your groups and get started soon!

CMSC 332: Computer Networks 2

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
" segment structure
= reliable data transfer
" flow control

" connection management

3.6 Principles of congestion
control

3.7 TCP congestion control

Transport Layer

3-

TCP congestion control: additive increase,

multiplicative decrease

*approach:_increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

= additive increase: increase cwnd by 1 MSS every
RTT until loss detected

= multiplicativg decrease: cut ewnd in half after loss

1Z

24 Kbytes —

saw tooth
behavior: probing
for bandwidth

16 Kbytes —

8 Kbytes —

time

cwnd: congestion window s

Transport Layer 3-

TCP Congestion Control: details

*+sender limits fransmission:
LastByteSent-LastByteAcked

*roughly,

<

cwnd

How does sender

rate =

cwnd

RTT

Bytes/sec

* cwnd is dynamic, function of
perceived network congestion

perceive congestion?

+|loss event = timeout or
3 duplicate acks

“+ TCP sender reduces
rate (cwnd) after loss
event

three mechanisms:

= ATMD
" slow start

" conservative after timeout
3-
evenTS Transport Layer

TCP Slow Start

“*when connection begins,
Increase rate
exponentially until first
loss event:

" initially cwnd = 1 MSS

" double cwnd every RTT

" done by incrementing cwnd
for every ACK received

*summary: initial rate is
slow but ramps up
exponentially fast

@ Host A Host B@

—RTT—

W

time

Transport Layer

3-

Refinement: inferring loss

+after 3 dup ACKs:
= cwnd is cut in half

" window then grows
linearly

“but after timeout event:

" cwnd instead set to 1
MSS;

" window then grows

— Philosophy:

* 3 dup ACKs indicates
network capable of
delivering some segments
“ timeout indicates a
“more alarming”

conhgestion scenario

Transport Layer 3-

Refinement

Q: when should the
exponential .
. . @)
increase switch to 23
linear? sE
A: when cwnd gets to %')‘-5
O

1/2 of its value
before timeout.

Implementation:

< variable ssthresh

“ on loss event, ssthresh is
set to 1/2 of cwnd just
before loss event

14 —
TCP Reno
12—
10—
g_|ssthresh -~ _____
6_
ssthresh
4—
TCP Tahoe
2_
0 [[| [[[[[[| | [[[[
O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

Transmission round

Transport Layer

3-

S

ummar

duplicate ACK

. TCP Congestion Contro

new ACK “Z ACKk
cwnd = cwnd + MSS* (MSS/cwnd)

dupACKcount++

()

A

cwnd =1 MSS
ssthresh = 64 KB
dupACKcount =0

22\
. (Qg s',ﬂj\\)] timeout (/
AY

ssthresh = cwnd/2
cwnd =1 MSS
dupACKcount =0

retransmit missing segment

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount =0

transmit new segment(s), as allowed
/> cwnd > ssthresh

A
;QTQ\ timeout
(¢ <)) ssthresh = cwnd/2
cwnd =1 MSS

dupACKcount =0
retransmit missing segment

ZiQ
timeout ‘(& <))
ssthresh = cwnd/2
cwnd =1
dupACKcount =0
retransmit missing segment

New ACK

cwnd = ssthresh
dupACKcount =0

duplicate ACK

cwnd = cwnd + MSS

dupACKcount =0
fransmit new segment(s), as allowed

duplicate ACK
dupACKcount++

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

transmit new segment(s), as allowed

Transport Layer

TCP throughput

*what's the average throughout of TCP as a
function of window size and RTT?

" ignore slow start

“+let W be the window size when loss occurs.
" when window is W, throughput is W/RTT

= just after loss, window drops to W/2, throughput
to W/2RTT.,

" average throughout: .75 W/RTT

Transport Layer 3-

TCP Futures: TCP over “long, fat pipes”

+example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

*requires window size W = 83,333 in-flight segments
*throughput in terms of loss rate:

1.22 sMSS
RTTAL

+=» L =210 Wow - a very small loss ratel
*new versions of TCP for high-speed

Transport Layer 3-

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

g KDC ! 5 <
L
TCP @ ﬂo’r’rleneck

connection 2 rou‘r.er
capacity R

Transport Layer 3-

Why is TCP fair?

two competing sessions:
+additive increase gives slope of 1, as throughout increases

*multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: de;rease .window b chTo.r' of 2
congestion avoidance: additive increase

/
/ 4 loss: decrease window by factor of 2
// congestion avoidance: additive increase

Connection 2 throughput 7

Connection 1 throughput R

Transport Layer 3-

Fairness (more)

Fairness and UDP

*multimedia apps often
do not use TCP

* do not want rate throttled
by congestion control

“instead use UDP:

" pump audio/video at
constant rate, tolerate
packet loss

Fairness and parallel TCP

connections

*nothing prevents app from
opening parallel connections
between 2 hosts.

“web browsers do this

+example: link of rate R
supporting 9 connections;

" hew app asks for 1 TCP, gets
rate R/10

" new app asks for 11 TCPs, gets
R/2 |

Transport Layer

3-

Chapter 3: Summary

*principles behind transport
layer services:

" multiplexing,
demultiplexing

= reliable data transfer
Next:

*leaving the network

“edge” (application,
“instantiation and transport layers)

“into the network
“"core"

= flow control

" congestion control

Transport Layer 3-

