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Announcements

• Project 3 - I will be posted soon.  Be on the lookout!  

• Project 2 will be graded Friday.  I’ll look at

‣ Source

• Correct conventions

• Correct source code title!

• Documentation!!!!!!!!!

‣ Functionality
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Chapter 3: Transport Layer

Our goals: 

• understand principles 
behind transport layer 
services:

‣ multiplexing/
demultiplexing

‣ reliable data transfer

‣ flow control

‣ congestion control

• learn about transport layer 
protocols in the Internet: 
‣ UDP: connectionless transport

‣ TCP: connection-oriented 
transport

‣ TCP congestion control
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Chapter 3 Outline

• 3.1 Transport-layer 
services

• 3.2 Multiplexing and 
demultiplexing

• 3.3 Connectionless 
transport: UDP

• 3.4 Principles of reliable 
data transfer

• 3.5 Connection-oriented 
transport: TCP 
‣ segment structure

‣ reliable data transfer

‣ flow control

‣ connection management 
• 3.6 Principles of congestion 

control
• 3.7 TCP congestion control
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Transport services and protocols

• provide logical communication 
between app processes running 
on different hosts

• transport protocols run in end 
systems 

‣ send side: breaks app messages 
into segments, passes to  
network layer

‣ rcv side: reassembles segments 
into messages, passes to app 
layer

• more than one transport 
protocol available to apps

‣ Internet: TCP and UDP
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Transport vs. Network layer

• network layer: logical 
communication between 
hosts

• transport layer: logical 
communication between 
processes 

‣ relies on, enhances, network 
layer services

Household analogy: 
12 kids sending letters to 12 

kids 
• processes = kids
• app messages = letters in 

envelopes
• hosts = houses
• transport protocol = Ann 

and Bill
• network-layer protocol = 

postal service
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Layers of Networks?

• You can view each layer that we have discussed thus far 
as an abstract network:

‣ Application Layer Networks: P2P, Social Networks, etc

‣ Transport Layer Networks: Communicating processes

‣ Network Layer Networks: Networks of Hosts

‣ Link Layer Networks: One-Hop Networks

‣ Physical Layer Networks: Wires
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Internet transport-layer protocols
• reliable, in-order delivery 

(TCP)

‣ congestion control 

‣ flow control

‣ connection setup

• unreliable, unordered 
delivery: UDP

‣ no-frills extension of “best-
effort” IP

• services not available: 

‣ delay guarantees

‣ bandwidth guarantees
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Chapter 3 Outline

• 3.1 Transport-layer 
services

• 3.2 Multiplexing and 
demultiplexing

• 3.3 Connectionless 
transport: UDP

• 3.4 Principles of reliable 
data transfer
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• 3.5 Connection-oriented 
transport: TCP 
‣ segment structure

‣ reliable data transfer

‣ flow control

‣ connection management 
• 3.6 Principles of congestion 

control
• 3.7 TCP congestion control
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Multiplexing/demultiplexing
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host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with 

header (later used for 
demultiplexing)

Multiplexing at send host:
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How demultiplexing works

• host receives IP datagrams

‣ each datagram has source IP 
address, destination IP address

‣ each datagram carries 1 
transport-layer segment

‣ each segment has source, 
destination port number 

• host uses IP addresses & port 
numbers to direct segment to 
appropriate socket

source port # dest port #

32 bits

application 
data  

(message)

other header fields

TCP/UDP segment format
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Connectionless demultiplexing

• Create sockets with port 
numbers:

addr1.sin_port = htons(12534); 

addr2.sin_port = htons(12535); 

• UDP socket identified by  two-
tuple:

(dest IP address, dest port number)

• When host receives UDP 
segment: 
‣ checks destination port number 

in segment

‣ directs UDP segment to socket 
with that port number 

• IP datagrams with different 
source IP addresses and/or 
source port numbers 
directed to same socket
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Connectionless demux (cont)

Client 
IP:B

P2

client 
 IP: A

P
1P1P3

server 
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”
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Connection-oriented demux

• TCP socket identified by 
4-tuple: 

‣ source IP address

‣ source port number

‣ dest IP address

‣ dest port number

• recv host uses all four 
values to direct segment 
to appropriate socket

• Server host may support 
many simultaneous TCP 
sockets: 
‣ each socket identified by its 

own 4-tuple 
• Web servers have different 

sockets for each connecting 
client 
‣ non-persistent HTTP will have 

different socket for each 
request
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Connection-oriented demux (cont)

Client 
IP:B

P1

client 
 IP: A

P
1P2P4

server 
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B
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Connection-oriented demux: Threaded Web Server

Client 
IP:B

P1

client 
 IP: A

P
1P2

server 
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B
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Chapter 3 Outline

• 3.1 Transport-layer 
services

• 3.2 Multiplexing and 
demultiplexing

• 3.3 Connectionless 
transport: UDP

• 3.4 Principles of reliable 
data transfer

• 3.5 Connection-oriented 
transport: TCP
‣ segment structure

‣ reliable data transfer

‣ flow control

‣ connection management 
• 3.6 Principles of congestion 

control 
• 3.7 TCP congestion control
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UDP: User Datagram Protocol [RFC 768]

• “no frills,” “bare bones” 
Internet transport protocol

• “best effort” service, UDP 
segments may be:

‣ lost

‣ delivered out of order to 
app

• connectionless:

‣ no handshaking between 
UDP sender, receiver

‣ each UDP segment handled 
independently of others

Why is there a UDP? 
• no connection establishment 

(which can add delay)
• simple: no connection state 

at sender, receiver
• small segment header
• no congestion control: UDP 

can blast away as fast as 
desired
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UDP: more

• often used for streaming 
multimedia apps

‣ loss tolerant

‣ rate sensitive

• other UDP uses

‣ DNS

‣ SNMP

• reliable transfer over UDP: add 
reliability at application layer

‣ application-specific error 
recovery!

source port # dest port #

32 bits

Application 
data  

(message)

UDP segment format

length checksum
Length, in 

bytes of UDP 
segment, 
including 

header
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UDP checksum

Sender:

• treat segment contents as 
sequence of 16-bit integers

• checksum: addition (1’s 
complement sum) of segment 
contents

‣ How is this different than 
2’s complement?

• sender puts checksum value 
into UDP checksum field

Receiver: 
• compute checksum of 

received segment
• check if computed checksum 

equals checksum field value: 
‣ NO - error detected

‣ YES - no error detected. But 
maybe errors nonetheless? 
More later ….

Goal: detect “errors” (e.g., flipped bits) in transmitted segment
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Internet Checksum Example

• Note

‣ When adding numbers, a carryout from the most 
significant bit needs to be added to the result

• Example: add two 16-bit integers

1  1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0 
1  1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1 

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1 

1  1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0 
1  0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

sum
checksum

wraparound

21



CMSC 332: Computer Networks

Port Scanning

• Technique used by black- and white-hat communities alike.

• Attempts to connect to a large number (usually all) of 
ports on a machine.

‣ Successful responses mean that a process is running.

‣ If you know what processes are running, you will be able to 
select the right exploit to launch.

‣ Most firewalls offer some protection against this.

• This is happening all the time on the  
Internet.

‣ The bad guys are constantly looking for  
a way in...
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Port Scanning Tools

• nmap is the most popular tool for port scanning.

‣  ...and it is free...

• By seeing which ports are active, nmap can tell a lot 
about your machine.

‣ For instance, what OS you are  
running...

• Be careful to check with admins                              
before running this!

‣ Most admins will automatically  
shut you down if you run it...
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