
CMSC 332: Computer Networks

CMSC 332 
Computer Networks 

Transport Layer

Professor Szajda



CMSC 332: Computer Networks

Announcements

• Project 3 - I will be posted soon.  Be on the lookout!  

• Project 2 will be graded Friday.  I’ll look at

‣ Source

• Correct conventions

• Correct source code title!

• Documentation!!!!!!!!!

‣ Functionality

2



CMSC 332: Computer Networks

Chapter 3: Transport Layer

Our goals: 

• understand principles 
behind transport layer 
services:

‣ multiplexing/
demultiplexing

‣ reliable data transfer

‣ flow control

‣ congestion control

• learn about transport layer 
protocols in the Internet: 
‣ UDP: connectionless transport

‣ TCP: connection-oriented 
transport

‣ TCP congestion control

3



CMSC 332: Computer Networks

Chapter 3 Outline

• 3.1 Transport-layer 
services

• 3.2 Multiplexing and 
demultiplexing

• 3.3 Connectionless 
transport: UDP

• 3.4 Principles of reliable 
data transfer

• 3.5 Connection-oriented 
transport: TCP 
‣ segment structure

‣ reliable data transfer

‣ flow control

‣ connection management 
• 3.6 Principles of congestion 

control
• 3.7 TCP congestion control

4



CMSC 332: Computer Networks

Transport services and protocols

• provide logical communication 
between app processes running 
on different hosts

• transport protocols run in end 
systems 

‣ send side: breaks app messages 
into segments, passes to  
network layer

‣ rcv side: reassembles segments 
into messages, passes to app 
layer

• more than one transport 
protocol available to apps

‣ Internet: TCP and UDP

5

application 
transport 
network 
data link 
physical

application 
transport 
network 
data link 
physical

network 
data link 
physical

network 
data link 
physical

network 
data link 
physical

network 
data link 
physical

network 
data link 
physical

logical end-end transport



CMSC 332: Computer Networks

Transport vs. Network layer

• network layer: logical 
communication between 
hosts

• transport layer: logical 
communication between 
processes 

‣ relies on, enhances, network 
layer services

Household analogy: 
12 kids sending letters to 12 

kids 
• processes = kids
• app messages = letters in 

envelopes
• hosts = houses
• transport protocol = Ann 

and Bill
• network-layer protocol = 

postal service

6



CMSC 332: Computer Networks

Layers of Networks?

• You can view each layer that we have discussed thus far 
as an abstract network:

‣ Application Layer Networks: P2P, Social Networks, etc

‣ Transport Layer Networks: Communicating processes

‣ Network Layer Networks: Networks of Hosts

‣ Link Layer Networks: One-Hop Networks

‣ Physical Layer Networks: Wires

7



CMSC 332: Computer Networks

application 
transport 
network 
data link 
physical

application 
transport 
network 
data link 
physical

network 
data link 
physical

network 
data link 
physical

network 
data link 
physical

network 
data link 
physical

network 
data link 
physical

logical end-end transport

Internet transport-layer protocols
• reliable, in-order delivery 

(TCP)

‣ congestion control 

‣ flow control

‣ connection setup

• unreliable, unordered 
delivery: UDP

‣ no-frills extension of “best-
effort” IP

• services not available: 

‣ delay guarantees

‣ bandwidth guarantees

8



CMSC 332: Computer Networks

Chapter 3 Outline

• 3.1 Transport-layer 
services

• 3.2 Multiplexing and 
demultiplexing

• 3.3 Connectionless 
transport: UDP

• 3.4 Principles of reliable 
data transfer

9

• 3.5 Connection-oriented 
transport: TCP 
‣ segment structure

‣ reliable data transfer

‣ flow control

‣ connection management 
• 3.6 Principles of congestion 

control
• 3.7 TCP congestion control



CMSC 332: Computer Networks

Multiplexing/demultiplexing

application

transport

network

link

physical

P
1

application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with 

header (later used for 
demultiplexing)

Multiplexing at send host:

10



CMSC 332: Computer Networks

How demultiplexing works

• host receives IP datagrams

‣ each datagram has source IP 
address, destination IP address

‣ each datagram carries 1 
transport-layer segment

‣ each segment has source, 
destination port number 

• host uses IP addresses & port 
numbers to direct segment to 
appropriate socket

source port # dest port #

32 bits

application 
data  

(message)

other header fields

TCP/UDP segment format

11



CMSC 332: Computer Networks

Connectionless demultiplexing

• Create sockets with port 
numbers:

addr1.sin_port = htons(12534); 

addr2.sin_port = htons(12535); 

• UDP socket identified by  two-
tuple:

(dest IP address, dest port number)

• When host receives UDP 
segment: 
‣ checks destination port number 

in segment

‣ directs UDP segment to socket 
with that port number 

• IP datagrams with different 
source IP addresses and/or 
source port numbers 
directed to same socket

12



CMSC 332: Computer Networks

Connectionless demux (cont)

Client 
IP:B

P2

client 
 IP: A

P
1P1P3

server 
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”

13



CMSC 332: Computer Networks

Connection-oriented demux

• TCP socket identified by 
4-tuple: 

‣ source IP address

‣ source port number

‣ dest IP address

‣ dest port number

• recv host uses all four 
values to direct segment 
to appropriate socket

• Server host may support 
many simultaneous TCP 
sockets: 
‣ each socket identified by its 

own 4-tuple 
• Web servers have different 

sockets for each connecting 
client 
‣ non-persistent HTTP will have 

different socket for each 
request

14



CMSC 332: Computer Networks

Connection-oriented demux (cont)

Client 
IP:B

P1

client 
 IP: A

P
1P2P4

server 
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

15



CMSC 332: Computer Networks

Connection-oriented demux: Threaded Web Server

Client 
IP:B

P1

client 
 IP: A

P
1P2

server 
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

16



CMSC 332: Computer Networks

Chapter 3 Outline

• 3.1 Transport-layer 
services

• 3.2 Multiplexing and 
demultiplexing

• 3.3 Connectionless 
transport: UDP

• 3.4 Principles of reliable 
data transfer

• 3.5 Connection-oriented 
transport: TCP
‣ segment structure

‣ reliable data transfer

‣ flow control

‣ connection management 
• 3.6 Principles of congestion 

control 
• 3.7 TCP congestion control

17



CMSC 332: Computer Networks

UDP: User Datagram Protocol [RFC 768]

• “no frills,” “bare bones” 
Internet transport protocol

• “best effort” service, UDP 
segments may be:

‣ lost

‣ delivered out of order to 
app

• connectionless:

‣ no handshaking between 
UDP sender, receiver

‣ each UDP segment handled 
independently of others

Why is there a UDP? 
• no connection establishment 

(which can add delay)
• simple: no connection state 

at sender, receiver
• small segment header
• no congestion control: UDP 

can blast away as fast as 
desired

18



CMSC 332: Computer Networks

UDP: more

• often used for streaming 
multimedia apps

‣ loss tolerant

‣ rate sensitive

• other UDP uses

‣ DNS

‣ SNMP

• reliable transfer over UDP: add 
reliability at application layer

‣ application-specific error 
recovery!

source port # dest port #

32 bits

Application 
data  

(message)

UDP segment format

length checksum
Length, in 

bytes of UDP 
segment, 
including 

header

19



CMSC 332: Computer Networks

UDP checksum

Sender:

• treat segment contents as 
sequence of 16-bit integers

• checksum: addition (1’s 
complement sum) of segment 
contents

‣ How is this different than 
2’s complement?

• sender puts checksum value 
into UDP checksum field

Receiver: 
• compute checksum of 

received segment
• check if computed checksum 

equals checksum field value: 
‣ NO - error detected

‣ YES - no error detected. But 
maybe errors nonetheless? 
More later ….

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

20



CMSC 332: Computer Networks

Internet Checksum Example

• Note

‣ When adding numbers, a carryout from the most 
significant bit needs to be added to the result

• Example: add two 16-bit integers

1  1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0 
1  1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1 

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1 

1  1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0 
1  0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

sum
checksum

wraparound

21



CMSC 332: Computer Networks

Port Scanning

• Technique used by black- and white-hat communities alike.

• Attempts to connect to a large number (usually all) of 
ports on a machine.

‣ Successful responses mean that a process is running.

‣ If you know what processes are running, you will be able to 
select the right exploit to launch.

‣ Most firewalls offer some protection against this.

• This is happening all the time on the  
Internet.

‣ The bad guys are constantly looking for  
a way in...

22



CMSC 332: Computer Networks

Port Scanning Tools

• nmap is the most popular tool for port scanning.

‣  ...and it is free...

• By seeing which ports are active, nmap can tell a lot 
about your machine.

‣ For instance, what OS you are  
running...

• Be careful to check with admins                              
before running this!

‣ Most admins will automatically  
shut you down if you run it...

23


