
CMSC 332: Computer Networks

CMSC 332
Computer Networking

Web and FTP

Professor Szajda

CMSC 332: Computer Networks

Review

• In the last slide set, we talked about principles of network
applications

‣ End-to-end argument

‣ Network archictectures  
(Client/Server, P2P)

‣ Service requirements

2

CMSC 332: Computer Networks

More Info: Bandwidth-Delay Product

• A student asked about the “bandwidth-delay product”.

• This is simply the bandwidth of a link multiplied by the
end-to-end delay (in seconds).

‣ It tells us how many bits are “in the pipe”.  

• Example: If we have a 10Mbps link between here and
Berkeley (with a 100ms delay), what is the  
bandwidth-delay product?

‣ 10Mbps * 1/10sec = 1 Mb

3

CMSC 332: Computer Networks 4

Chapter 2: Application layer

• 2.1 Principles of network applications

• 2.2 Web and HTTP

• 2.3 FTP

• 2.4 Electronic Mail

• 2.5 DNS

• 2.6 P2P file sharing

• 2.7-2.8 Sockets

• 2.9 Building a webserver

CMSC 332: Computer Networks 5

Web and HTTP

First some jargon

• Web page consists of objects

• Object can be HTML file, JPEG image, Java applet, audio file,
…

• Web page consists of base HTML-file which includes several
referenced objects

• Each object is addressable by a URL

• Example URL:
www.someschool.edu/someDept/pic.gif

host name path name

CMSC 332: Computer Networks 6

HTTP overview

HTTP: hypertext transfer
protocol

• Web’s application layer
protocol (RFCs 1945, 2616)

• client/server model

‣ client: browser that requests,
receives, “displays” Web
objects

‣ server: Web server sends
objects in response to
requests

PC running
Firefox

Server
running

Apache Web
server

Mac running
Safari

HTTP request

HTTP request

HTTP response

HTTP response

CMSC 332: Computer Networks 7

HTTP overview (continued)

Uses TCP:

• client initiates TCP connection
(creates socket) to server, port 80

• server accepts TCP connection
from client

• HTTP messages (application-layer
protocol messages) exchanged
between browser (HTTP client)
and Web server (HTTP server)

• TCP connection closed

‣ Well, maybe (see next slide)

HTTP is “stateless”
• server maintains no

information about past
client requests

Protocols that maintain
“state” are complex!

• past history (state) must be
maintained

• if server/client crashes, their
views of “state” may be
inconsistent, must be reconciled

aside

CMSC 332: Computer Networks 8

HTTP connections

Nonpersistent HTTP

• At most one object is
sent over a TCP
connection.

• HTTP/1.0 uses
nonpersistent HTTP

Persistent HTTP
• Multiple objects can be sent

over single TCP connection
between client and server.

• HTTP/1.1 uses persistent
connections in default mode

CMSC 332: Computer Networks 9

Nonpersistent HTTP

Suppose user enters URL  
www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP
connection to HTTP server
(process) at www.someSchool.edu
on port 80

2. HTTP client sends HTTP request
message (containing URL)  
into TCP connection socket.
Message indicates that client
wants object someDepartment/
home.index

1b. HTTP server at host
www.someSchool.edu waiting for
TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into
its socket

time

(contains text,
references to 10

jpeg images)

CMSC 332: Computer Networks 10

Nonpersistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each of 10
jpeg objects

4. HTTP server closes TCP
connection.

time

CMSC 332: Computer Networks 11

Non-Persistent HTTP: Response time

Definition of RTT: time to send
a small packet to travel from
client to server and back.

Response time:

• one RTT to initiate TCP
connection

• one RTT for HTTP request
and first few bytes of HTTP
response to return

• file transmission time

total = 2RTT+transmit time

time to
transmit

file

initiate TCP
connection

RTT
request

file

RTT

file
received

time time

CMSC 332: Computer Networks 12

Persistent HTTP
Nonpersistent HTTP issues:

• requires 2 RTTs per object

• OS overhead for each TCP
connection

• browsers often open parallel
TCP connections to fetch
referenced objects

Persistent HTTP

• server leaves connection open
after sending response

• subsequent HTTP messages
between same client/server sent
over open connection

Persistent without pipelining:
• client issues new request only

when previous response has
been received

• one RTT for each referenced
object

Persistent with pipelining:
• default in HTTP/1.1
• client sends requests as soon as

it encounters a referenced
object

• as little as one RTT total for all
the referenced objects

CMSC 332: Computer Networks 13

HTTP request message

• two types of HTTP messages: request, response

• HTTP request message:

‣ ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
 lines

Carriage return,
line feed

indicates end
of message

CMSC 332: Computer Networks 14

HTTP request message: general format

CMSC 332: Computer Networks 15

Uploading form input

Post method:

• Web page often includes
form input

• Input is uploaded to
server in entity body

URL method:
• Uses GET method
• Input is uploaded in URL

field of request line:

www.somesite.com/animalsearch?monkeys&banana

CMSC 332: Computer Networks 16

Method types

HTTP/1.0

• GET

• POST

• HEAD

‣ asks server to leave
requested object out of
response

HTTP/1.1
• GET, POST, HEAD
• PUT

‣ uploads file in entity body to
path specified in URL field

• DELETE
‣ deletes file specified in the

URL field

CMSC 332: Computer Networks 17

HTTP response message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

CMSC 332: Computer Networks 18

HTTP response status codes

200 OK

‣ request succeeded, requested object later in this message

301 Moved Permanently

‣ requested object moved, new location specified later in this message (Location:)

400 Bad Request

‣ request message not understood by server

404 Not Found

‣ requested document not found on this server

505 HTTP Version Not Supported

In first line in server to client response message.
A few sample codes:

CMSC 332: Computer Networks 19

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

Opens TCP connection to port 80
(default HTTP server port) at

www.richmond.edu.
Anything typed in sent

to port 80 at www.richmond.edu

telnet www.richmond.edu 80

2. Type in a GET HTTP request:

GET /~dszajda/classes/cs332/
Spring_2012/index.html HTTP/1.1
Host: www.richmond.edu

By typing this in (hit carriage
return twice), you send

this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

http://www.cc.gatech.edu
http://www.cc.gatech.edu
http://www.cc.gatech.edu

CMSC 332: Computer Networks 20

User-server state: cookies

Many major Web sites use cookies

Four components:

1) cookie header line of HTTP
response message

2) cookie header line in HTTP
request message

3) cookie file kept on user’s host,
managed by user’s browser

4) back-end database at Web site

Example:
‣ Susan accesses Internet always

from same PC

‣ She visits a specific e-commerce
site for first time

‣ When initial HTTP requests
arrives at site, site creates a
unique ID and creates an entry
in backend database for ID

CMSC 332: Computer Networks 21

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

 entry

usual http response
Set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

spectific
action

access
ebay 8734

amazon 1678

CMSC 332: Computer Networks 22

Cookies (continued)

What cookies can bring:

• authorization

• shopping carts

• recommendations

• user session state (Web e-mail)

Cookies and privacy:
• cookies permit sites to learn a

lot about you

• you may supply name and e-mail
to sites

aside

How to keep “state”:
• Protocol endpoints: maintain

state at sender/receiver over
multiple transactions

• cookies: http messages carry
state

CMSC 332: Computer Networks 23

Web caches (proxy server)

• user sets browser: Web
accesses via cache

• browser sends all HTTP
requests to cache

‣ object in cache: cache returns
object

‣ else cache requests object
from origin server, then
returns object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

origin
server

CMSC 332: Computer Networks 24

More about Web caching

• Cache acts as both client
and server

• Typically cache is installed
by ISP (university,
company, residential ISP)

Why Web caching?
• Reduce response time for

client request.
• Reduce traffic on an

institution’s access link.
• Internet dense with caches:

enables “poor” content
providers to effectively
deliver content (but so
does P2P file sharing)

CMSC 332: Computer Networks 25

Caching example
Assumptions

• average object size = 100,000 bits

• avg. request rate from institution’s
browsers to origin servers = 15/sec

• delay from institutional router to
any origin server and back to
router = 2 sec

Consequences

• utilization on LAN = 15%

• utilization on access link = 100%

• total delay = Internet delay + access
delay + LAN delay

 = 2 sec + minutes + milliseconds

origin
servers

public
 Internet

10 Mbps LAN

1.5 Mbps
access link

institutional
cache

CMSC 332: Computer Networks 26

Caching example (cont)

Possible solution

• increase bandwidth of access link
to, say, 10 Mbps

Consequences

• utilization on LAN = 15%

• utilization on access link = 15%

• Total delay = Internet delay + access
delay + LAN delay

 = 2 sec + msecs + msecs

• often a costly upgrade

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

institutional
cache

CMSC 332: Computer Networks 27

Caching example (cont)

Install cache

• suppose hit rate is .4

Consequence

• 40% requests will be satisfied
almost immediately

• 60% requests satisfied by origin
server

• utilization of access link reduced
to 60%, resulting in negligible
delays (say 10 msec)

• total avg delay = Internet delay
+ access delay + LAN delay =  
0.6*(2.01) secs + .
4*milliseconds < 1.4 secs

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

CMSC 332: Computer Networks 28

Conditional GET

• Goal: don’t send object if cache
has up-to-date cached version

• cache: specify date of cached
copy in HTTP request

If-modified-since: <date>

• server: response contains no
object if cached copy is up-to-
date:

HTTP/1.0 304 Not Modified

cache server
HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

CMSC 332: Computer Networks 29

Chapter 2: Application layer

• 2.1 Principles of network applications

• 2.2 Web and HTTP

• 2.3 FTP

• 2.4 Electronic Mail

• 2.5 DNS

• 2.6 P2P file sharing

• 2.7-2.8 Sockets

• 2.9 Building a webserver

CMSC 332: Computer Networks 30

FTP: the file transfer protocol

• transfer file to/from remote host

• client/server model

‣ client: side that initiates transfer (either to/from remote)

‣ server: remote host

• ftp: RFC 959

• ftp server: port 21

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

CMSC 332: Computer Networks 31

FTP: separate control, data connections

• FTP client contacts FTP server at
port 21, specifying TCP as
transport protocol

• Client obtains authorization over
control connection

• Client browses remote directory
by sending commands over
control connection.

• When server receives file
transfer command, server opens
2nd TCP connection (for file) to
client

• After transferring one file, server
closes data connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

• Server opens another TCP data
connection to transfer another file.

• Control connection: “out of band”
• FTP server maintains “state”:

current directory, earlier
authentication

CMSC 332: Computer Networks 32

FTP commands, responses

Sample commands:

• sent as ASCII text over control
channel

• USER username

• PASS password

• LIST return list of file in
current directory

• RETR filename retrieves
(gets) file

• STOR filename stores
(puts) file onto remote host

Sample return codes
• status code and phrase (as in

HTTP)
• 331 Username OK,

password required
• 125 data connection

already open; transfer
starting

• 425 Can’t open data
connection

• 452 Error writing file

CMSC 332: Computer Networks

Next Time

• We will cover Email and DNS

‣ Read Sections 2.4 and 2.5

• Reminder:

‣ Project 1 has been posted

33

