
Algorithm Design
M. T. Goodrich and R. Tamassia

John Wiley & Sons

Solution of Exercise C-6.9

1. No. Not always unique. It’s possible that the remaining tree has two nodes.
Consider again, a tree that consists of a unique path having an even number
of nodes. And, of course, we don’t like to remove the leaves of a two-node
tree (there will be nothing left!).

2. First, observe that the center of a treeT does not change, if we remove all
leaves of the tree (or, if we add some children to every leaf of the tree).
Moreover, a leaf can not be the center of a tree of at least 3 nodes. The idea
here is, thus, to keep pruning the leaves until one or two nodes are left:

(a) Remove all leaves ofT. Let the remaining tree beT1.
(b) Remove all leaves ofT1. Let the remaining tree beT2.
(c) Repeat the “remove” operation as follows: Remove all leaves ofTi .

Let remaining tree beTi+1.
(d) Once the remaining tree has only one node or two nodes, stop. Sup-

pose now the remaining tree isTk.
(e) If Tk has only one node, that is the center ofT. Theeccentricityof the

center node isk.
(f) If Tk has two nodes, either can be the center ofT. Theeccentricityof

the center node isk+1.

This high level algorithm description gives us a linear time algorithm. (Worst
case, when the tree is just a path.)
Now, we can either really perform removals in a copy of our tree, or sim-
ulate the removal by marking the leaves. Any “remove” operation can be
performed by traversing the tree (starting from an arbitrary node) and delet-
ing/marking the leaves. However, a “remove” operation may requireO(n)
time, yielding a total quadratic time complexity. Another way to see that:
consider a degenerate tree which is actually a path (or list). At each step
only two leaves are removed, and these two leaves are found in time pro-
portional to the current size of the path. This worst case example shows that
the required time can be of the order of∑n

i=1 i = O(n2).



2

We give the pseudo-code for the algorithm. The algorithm only returns the
center ofG and not the eccentricity (this can be easily done by storing the
number of leaf “removal” operations).

Algorithm Center(G):
G′← a copy of G
while G′.numVertices()> 3 do

RemoveLeaves(G′,G′.aVertex(),NULL)
return G′.aVertex()



3

Algorithm RemoveLeaves(G,v,u):
{u is the parent of v in the tree traversal}

c← 0
for all e∈G.incidentEdges(v) do

c← c+1
w←G.opposite(v,e)
if w 6= u then

RemoveLeaves(G,w,v)
if c = 1 then

removeVertex(v)


