Algorithm Design
M. T. Goodrich and R. Tamassia
John Wiley & Sons

Solution of Exercise C-6.9

1. No. Not always unique. It's possible that the remaining tree has two nodes.
Consider again, a tree that consists of a unique path having an even number
of nodes. And, of course, we don't like to remove the leaves of a two-node
tree (there will be nothing left!).

2. First, observe that the center of a trEeloes not change, if we remove all
leaves of the tree (or, if we add some children to every leaf of the tree).
Moreover, a leaf can not be the center of a tree of at least 3 nodes. The idea
here is, thus, to keep pruning the leaves until one or two nodes are left:

(a) Remove all leaves oF. Let the remaining tree bg.

(b) Remove all leaves of;. Let the remaining tree bg.

(c) Repeat the “remove” operation as follows: Remove all leaveg.of
Let remaining tree b&;_ 1.

(d) Once the remaining tree has only one node or two nodes, stop. Sup-
pose now the remaining treeg.

(e) If Tx has only one node, that is the centeffofTheeccentricityof the
center node i&.

(f) If Tx has two nodes, either can be the centef oTheeccentricityof
the center node is+ 1.

This high level algorithm description gives us a linear time algorithm. (Worst
case, when the tree is just a path.)

Now, we can either really perform removals in a copy of our tree, or sim-
ulate the removal by marking the leaves. Any “remove” operation can be
performed by traversing the tree (starting from an arbitrary node) and delet-
ing/marking the leaves. However, a “remove” operation may redd{re

time, yielding a total quadratic time complexity. Another way to see that:
consider a degenerate tree which is actually a path (or list). At each step
only two leaves are removed, and these two leaves are found in time pro-
portional to the current size of the path. This worst case example shows that
the required time can be of the orderyt_,i = O(?).



We give the pseudo-code for the algorithm. The algorithm only returns the
center ofG and not the eccentricity (this can be easily done by storing the
number of leaf “removal” operations).

Algorithm Center(G):
G’ « a copy of G
while G'.numVertices()> 3 do
Removeleaves(G',G’.aVertex(),NULL)
return G'.aVertex()



Algorithm Removeleaves(G,v,u):
{u is the parent of V in the tree traversal}
c—0
for all e € G.incidentEdges(v) do
c—c+1
W «— G.opposite(V,e)
if w=u then
Removeleaves(G,w,V)
if c=1then
removeVertex(V)



