Divide-and-Conquer

7 2 | 9 4 → 2 4 7 9

7 | 2 → 2 7

7 → 7

2 → 2

9 | 4 → 4 9

9 → 9

4 → 4
Outline and Reading

- Divide-and-conquer paradigm (§5.2)
- Review Merge-sort (§4.1.1)
- Recurrence Equations (§5.2.1)
 - Iterative substitution
 - Recursion trees
 - Guess-and-test
 - The master method
- Integer Multiplication (§5.2.2)
Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two or more disjoint subsets S_1, S_2, \ldots
 - Recur: solve the subproblems recursively
 - Conquer: combine the solutions for S_1, S_2, \ldots, into a solution for S

- The base case for the recursion are subproblems of constant size

- Analysis can be done using recurrence equations
Merge-Sort Review

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S_1 and S_2 of about $n/2$ elements each
 - Recur: recursively sort S_1 and S_2
 - Conquer: merge S_1 and S_2 into a unique sorted sequence

Algorithm $\text{mergeSort}(S, C)$

Input sequence S with n elements, comparator C

Output sequence S sorted according to C

if $S.\text{size}() > 1$
 $(S_1, S_2) \leftarrow \text{partition}(S, n/2)$
 $\text{mergeSort}(S_1, C)$
 $\text{mergeSort}(S_2, C)$
 $S \leftarrow \text{merge}(S_1, S_2)$
Recurrence Equation Analysis

- The conquer step of merge-sort consists of merging two sorted sequences, each with $n/2$ elements and implemented by means of a doubly linked list, takes at most bn steps, for some constant b.
- Likewise, the basis case ($n < 2$) will take at most b steps.
- Therefore, if we let $T(n)$ denote the running time of merge-sort:

$$T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases}$$

- We can therefore analyze the running time of merge-sort by finding a **closed form solution** to the above equation.
 - That is, a solution that has $T(n)$ only on the left-hand side.
Iterative Substitution

In the iterative substitution, or “plug-and-chug,” technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern:

\[T(n) = 2T(n/2) + bn \]

\[= 2(2T(n/2^2)) + b(n/2)) + bn \]

\[= 2^2 T(n/2^2) + 2bn \]

\[= 2^3 T(n/2^3) + 3bn \]

\[= 2^4 T(n/2^4) + 4bn \]

\[= ... \]

\[= 2^i T(n/2^i) + ibn \]

Note that base, \(T(1)=b \), case occurs when \(2^i=n \). That is, \(i = \log n \).

So,

\[T(n) = bn + bn \log n \]

Thus, \(T(n) \) is \(\Theta(n \log n) \).
The Recursion Tree

Draw the recursion tree for the recurrence relation and look for a pattern:

\[T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases} \]

<table>
<thead>
<tr>
<th>depth</th>
<th>T's</th>
<th>size</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(n)</td>
<td>(bn)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(n/2)</td>
<td>(bn)</td>
</tr>
<tr>
<td>(i)</td>
<td>(2^i)</td>
<td>(n/2^i)</td>
<td>(bn)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Total time = \(bn + bn \log n\)

(last level plus all previous levels)
Guess-and-Test Method

- In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

\[
T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn \log n & \text{if } n \geq 2
\end{cases}
\]

- Guess: \(T(n) < cn \log n \).

\[
T(n) = 2T(n/2) + bn \log n = 2(c(n/2) \log(n/2)) + bn \log n = cn(\log n - \log 2) + bn \log n = cn \log n - cn + bn \log n
\]

- Wrong: we cannot make this last line be less than \(cn \log n \).
Guess-and-Test Method, Part 2

- Recall the recurrence equation:
 \[T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn \log n & \text{if } n \geq 2
 \end{cases} \]

- Guess #2: \(T(n) < cn \log^2 n \).
 \[
 T(n) = 2T(n/2) + bn \log n \\
 = 2(c(n/2) \log^2 (n/2)) + bn \log n \\
 = cn(\log n - \log 2)^2 + bn \log n \\
 = cn \log^2 n - 2cn \log n + cn + bn \log n \\
 \leq cn \log^2 n
 \]
 if \(c > b \).

- So, \(T(n) \) is \(O(n \log^2 n) \).

- In general, to use this method, you need to have a good guess and you need to be good at induction proofs.
Many divide-and-conquer recurrence equations have the form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \epsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).
Master Method, Example 1

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. If \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. If \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. If \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 4T(n/2) + n \]

Solution: \(\log_b a = 2 \), so case 1 says \(T(n) \) is \(\Theta(n^2) \).
Master Method, Example 2

- The form:
 \[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
 \end{cases} \]

- The Master Theorem:
 1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
 2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
 3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \),
 provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Example:
 \[T(n) = 2T(n/2) + n \log n \]

Solution: \(\log_b a = 1 \), so case 2 says \(T(n) \) is \(\Theta(n \log^2 n) \).
Master Method, Example 3

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = T(n/3) + n \log n \]

Solution: \(\log_b a = 0 \), so case 3 says \(T(n) \) is \(\Theta(n \log n) \).
Master Method, Example 4

- The form:
 \[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
 \end{cases} \]

- The Master Theorem:
 1. if \(f(n) \) is \(O(n^{\log_b a - \epsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
 2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
 3. if \(f(n) \) is \(\Omega(n^{\log_b a + \epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Example:
 \[T(n) = 8T(n/2) + n^2 \]

Solution: \(\log_b a = 3 \), so case 1 says \(T(n) \) is \(\Theta(n^3) \).
Master Method, Example 5

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 9T(n/3) + n^3 \]

Solution: \(\log_b a = 2 \), so case 3 says \(T(n) \) is \(\Theta(n^3) \).
Master Method, Example 6

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \varepsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \varepsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = T(n/2) + 1 \] (binary search)

Solution: \(\log_b a = 0 \), so case 2 says \(T(n) \) is \(\Theta(\log n) \).
Master Method, Example 7

The form:

\[
T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases}
\]

The Master Theorem:

1. if \(f(n) \) is \(O(n^{\log_b a - \epsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. if \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) \) is \(\Omega(n^{\log_b a + \epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[
T(n) = 2T(n/2) + \log n
\]

(heap construction)

Solution: \(\log_b a = 1 \), so case 1 says \(T(n) \) is \(\Theta(n) \).
Iterative “Proof” of the Master Theorem

Using iterative substitution, let us see if we can find a pattern:

\[T(n) = aT(n/b) + f(n) \]

\[\begin{align*}
 &= a(aT(n/b^2)) + f(n/b) + f(n) \\
 &= a^2T(n/b^2) + af(n/b) + f(n) \\
 &= a^3T(n/b^3) + a^2f(n/b^2) + af(n/b) + f(n) \\
 &= \cdots \\
 &= a^kT(n/b^k) + \sum_{i=0}^{k-1} a^i f(n/b^i) \\
\end{align*} \]
Iterative “Proof” of the Master Theorem

\[M = a^{\log_b n} T(1) + \sum_{i=0}^{(\log_b n)-1} a^i f\left(\frac{n}{b^i}\right) \]

\[= n^{\log_b a} T(1) + \sum_{i=0}^{(\log_b n)-1} a^i f\left(\frac{n}{b^i}\right) \]

We then distinguish the three cases as
- The first term is dominant
- Each part of the summation is equally dominant
- The summation is a geometric series
Algorithm: Multiply two n-bit integers I and J.

- Divide step: Split I and J into high-order and low-order bits
 \[I = I_h 2^{n/2} + I_l \]
 \[J = J_h 2^{n/2} + J_l \]

- We can then define \(I \times J \) by multiplying the parts and adding:
 \[
 I \times J = (I_h 2^{n/2} + I_l) \times (J_h 2^{n/2} + J_l) \\
 = I_h J_h 2^n + I_h J_l 2^{n/2} + I_l J_h 2^{n/2} + I_l J_l
 \]

- So, \(T(n) = 4T(n/2) + n \), which implies \(T(n) \) is \(\Theta(n^2) \).
- But that is no better than the algorithm we learned in grade school.

where did this come from?
Algorithm: Multiply two n-bit integers I and J.

- Divide step: Split I and J into high-order and low-order bits
 \[I = I_h 2^{n/2} + I_l \]
 \[J = J_h 2^{n/2} + J_l \]

- Observe that there is a different way to multiply parts:
 \[
 I \times J = I_h J_h 2^n + [(I_h - I_l)(J_l - J_h) + I_h J_h + I_l J_l]2^{n/2} + I_l J_l
 = I_h J_h 2^n + [(I_h J_l - I_l J_h - I_h J_h + I_l J_l) + I_h J_h + I_l J_l]2^{n/2} + I_l J_l
 = I_h J_h 2^n + (I_h J_l + I_l J_h)2^{n/2} + I_l J_l
 \]

- So, \(T(n) = 3T(n/2) + n \), which implies \(T(n) \) is \(O(n^{\log_2 3}) \), by the Master Theorem.
- Thus, \(T(n) \) is \(O(n^{1.585}) \).
Matrix Multiplication

- Given $n \times n$ matrices X and Y, wish to compute the product $Z = XY$.
- Formula for doing this is

$$Z_{ij} = \sum_{k=0}^{n-1} X_{ik} Y_{kj}$$

- This runs in $O(n^3)$ time
 - In fact, multiplying an $n \times m$ by an $m \times q$ takes nmq operations
Matrix Multiplication

\[
\begin{bmatrix}
I & J \\
K & L
\end{bmatrix} = \begin{bmatrix}
A & B \\
C & D
\end{bmatrix} \begin{bmatrix}
E & F \\
G & H
\end{bmatrix}
\]

\[
I = AE + BG \\
J = AF + BH \\
K = CE + DG \\
L = CF + DH
\]
Using the decomposition on previous slide, we can compute \(Z \) using 8 recursively computed \((n/2) \times (n/2)\) matrices plus four additions that can be done in \(O(n^2) \) time.

Thus \(T(n) = 8T(n/2) + bn^2 \)

Still gives \(T(n) \) is \(\Theta(n^3) \)
Strassen’s Algorithm

If we define the matrices S_1 through S_7 as follows

\[
\begin{align*}
S_1 &= A(F - H) \\
S_2 &= (A + B)H \\
S_3 &= (C + D)E \\
S_4 &= D(G - E) \\
S_5 &= (A + D)(E + H) \\
S_6 &= (B - D)(G + H) \\
S_7 &= (A - C)(E + F)
\end{align*}
\]
Strassen’s Algorithm

Then we get the following:

\[I = S_5 + S_6 + S_4 - S_2 \]
\[J = S_1 + S_2 \]
\[K = S_3 + S_4 \]
\[L = S_1 - S_7 - S_3 + S_5 \]

So now we can compute \(Z = XY \) using only seven recursive multiplications.
Strassen’s Algorithm

This gives the relation $T(n) = 7T(n/2) + bn^2$ for some $b > 0$.

By the Master Theorem, we can thus multiply two $n \times n$ matrices in $\Theta(n^{\log_2 7})$ time, which is approximately $\Theta(n^{2.808})$.

- May not seem like much, but if you’re multiplying two 100×100 matrices:
 - n^3 is 1,000,000
 - $n^{2.808}$ is 413,048

With added complexity, there are algorithms to multiply matrices in as little as $\Theta(n^{2.376})$ time
- Reduces figures above to 56,494