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Goal

» Build an architecture to support the
following instructions

+ Arithmetic: add, sub, addi, slt
* Memory references: lw, sw
* Branches: j, beg



Process

1) Design basic framework that is
needed by all instructions

2) Build a computer for each operation
individually

3) Add MUXs to choose between
different operations

4) Add control signals to control the
MUXSs



MIPS Steps

Get an from memory using the

Read or registers each instruction

¢+ One register:
¢+ Two registers:

All instructions use after reading regs
Some instructions also access
Write result to
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Write register file



Get Instruction
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instructions?
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what address to
fetch instruction?
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What happens if instruction reads
and writes same register?
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What happens if instruction reads
and writes same register?

Operation rs [rt |rd |shamt |funct |# meaning

31513 1|0 32 #3853 <-$3+385

What would happen if we allowed write to occur at any time?
Clock is dependent on longest path (Iw)
Quick operations may loop twice through machine, getting incorrect result.
OQ/ fun > >
—>




Reading/Write Registers

» When does register get written?
+ At the end of the clock cycle
* Edge-triggered circuits
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Sigh Extension

« How do we go from 16-bit number to
32-bit number?

« How about 4-bit to 8-bit.
+ 0111 = 7=
+1110 = -2 =

» Take the top bit and copy it to all the
other bits
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Control Unit

» Set of control line values cause appropriate
actions to be taken at each step

 Finite state machine determines what needs
to be done at each step
+ Fetch

¢+ Decode
L 4

*

*
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Cycle Time

* Not all instructions must go through
all steps
+ add doesn’t need to go to memory

* Single long clock cycle makes add take
as long as load

* Can we change this?

* Break single instruction execution into
small execution steps
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