MIPS Datapath

CMSC 301
Prof Szajda

Goal

» Build an architecture to support the
following instructions

+ Arithmetic: add, sub, addi, slt
* Memory references: lw, sw
* Branches: j, beg

Process

1) Design basic framework that is
needed by all instructions

2) Build a computer for each operation
individually

3) Add MUXs to choose between
different operations

4) Add control signals to control the
MUXSs

MIPS Steps

Get an from memory using the

Read or registers each instruction

¢+ One register:
¢+ Two registers:

All instructions use after reading regs
Some instructions also access
Write result to

Framework

Framework

Framework

Framework

Framework

Write register file

Get Instruction

Where do we store
instructions?

Get Instruction

Where do we store
instructions?

Get Instruction

How do we know at
what address to
fetch instruction?

Get Instruction

How do we know at
what address to
fetch instruction?

Get Instruction

What do we end up
with?

Get Instruction

What do we end up
with?

et Instruction

et Instruction

“Add” Instruction

Write register fi

“Add” Instruction

Operation

I'S

rd

shamt

funct

meaning

add

()

0

32

852 <-$3 + 85

“Add” Instruction

Operation | rs

rd |shamt |funct

meaning

add 3

e

#9852 <-$3+9$5

How many

op/fun

rs
rs B
td
imm

registers do we
need to read?

rite register fil

“Add” Instruction

Operation | rs

rd |shamt |funct

meaning

add 3

e

#9852 <-$3+9$5

How many

op/fun

rs
rs B
td
imm

registers do we
need to read?

rite register fil

“Add” Instruction

Operation | rs

rd

add

e

op/fun

rs
rs B
td
imm

meaning

What part of
instruction

852 <-$3 + 85

tells us the
register
number?

Write register file

“Add” Instruction

Operation

I'S

add

What part of
instruction
tells us the

register
number?

meaning

852 <-$3 + 85

Write register file

“Add” Instruction

Operation

IS

rd

shamt

funct

meaning

()

0

32

#$2<-$3+385

-

Write register file

“Add” Instruction

Operation

I'S

rd

shamt

funct

meaning

add

32

52 <-$3+ 85

How do we
know which
register to
write?

“Add” Instruction

Operation

IS

rd

shamt

funct

meaning

add

32

#$2<-$3+385

How do we
know which
register to
write?

“Add” Instruction

Operation rs

rd

shamt

funct

meaning

32

#$2<-$3+385

Og/fun >
I

What happens if instruction reads
and writes same register?

Operation |rs |1t |rd |shamt |funct |# meaning

add 31513 1|0 32 #3853 <-$3+385

What happens if instruction reads
and writes same register?

Operation rs [rt |rd |shamt |funct |# meaning

31513 1|0 32 #3853 <-$3+385

What would happen if we allowed write to occur at any time?
Clock is dependent on longest path (Iw)
Quick operations may loop twice through machine, getting incorrect result.
OQ/ fun > >
—>

Reading/Write Registers

» When does register get written?
+ At the end of the clock cycle
* Edge-triggered circuits

“Addi” Instruction

Operation |rs

mm

addi $5,%3,6 | 3

What

op/fun

rs
rs B
td
imm

registers do
we read?

meaning

#35<-53+6

“Addi” Instruction

Operation |rs |rt|imm # meaning

addi $5,$3,6 | 3 What #$5<-83+6
registers do

we read?

“Addi” Instruction

Operation

IS

mm

addi $5,$3,6

meaning

Where do

#$85<-$3+6

we get the
second
input?

“Addi” Instruction
T T A—

¢ | Where do we #S5<-$3+6
get the

second
input?

T~

32 bits

16 bits

Sigh Extension

« How do we go from 16-bit number to
32-bit number?

« How about 4-bit to 8-bit.
+ 0111 = 7=
+1110 = -2 =

» Take the top bit and copy it to all the
other bits

“Addi” Instruction

Operation

IS

mm

addi $5,$3,6

< Sign extend

immediate
value

meaning

#85<-$3+6

“Addi” Instruction
| operation [rs [rtfimm — [#meaning |

addi $5,$3,6 |3 |5 |6 #85<-$3+6

How do we
know which
register to
write?

“Addi” Instruction

T), R —— s —

addi $5,%3,6 | 3 6 #35<-$3+6

()]

How do we
know which
register to
write?

Putting them Together

»

»
»
>
»
>

Putting them Together

" | 7

4-
*l op/fun
d |
I Nt
|Astd
imm

Putting them Together

9

Putting them Together

What
determines
which to take?

Putting them Together

What
determines

which to take?

Operation

Load Operation

IS

11mim

meaning

4
*l op/fun
>ENIS
I nf {t——
lAgtd
imm

>

Operation |(rs |[rt|imm # meaning

How many source regs?
What part of instruction?

Operation (rs |rt|imm # meaning

How many source regs?
What part of instruction?

Operation |(rs |[rt|imm # meaning

Iog/fun

Where do we get the second

Operation |(rs |rt|imm # meaning

Where do we get the second
input?

op/fun

s
1T B
td
1mm

Operation |1s

rt | 1mm # meaning

op/fun

s
1T B
td
mm

What do we do with the ALU
output?

Operation |1s

rt | 1mm # meaning

op/fun

s
1T B
td
mm

What do we do with the ALU
output?

Load Operation

Operation |(rs |[rt|imm # meaning

op/fun

s
1T B
td
mm

Operation |(rs |[rt|imm # meaning

Where do we
write the result?

Operation |(rs |[rt|imm # meaning

Where do we
write the result?

Store Qperation

Operation |rs |rt|1imm # meaning

op/fun

1T B
fd

i

16
A

_‘_33_

Operation

meaning

Address calculation
identical to load word

Store Qperation

Operation |(rs |[rt|imm # meaning

Is $5 read or
written?
Which register?

Store Qperation

Operation |(rs |[rt|imm # meaning

Is $5 read or
written?
Which register?

Operation |rs |rt|1mm

meaning

Is $5 read or
written?
Which register?

Operation

Store Opera

rs |rt|1mm

meaning

What do we do with
the value?

Store Qperation

Operation |(rs |[rt|imm # meaning

What do we do with
the value?

Operation |(rs |[rt|imm # meaning

What do we do
with OutData?

Operation |(rs |[rt|imm # meaning

What do we do
with OutData?

Putting them together

Putting them togethe

What do we NOT

want it to do for a

Putting them toge* e

want it to do for a

Do we want it to
read or write?

Do we want it to

PUtting them toget read or write?

vViemvvr.. . |

Operation

“b_e

” Instruction

mm

meaning

“bﬁﬂllnsILucIiQn

Operation rt | imm # meaning

op/fun
I >

What operation?

What operation?

11 s | -
JC = , I
Operation # meaning

| VY VdeVdlelpy | J | J | U | /] AL R Y Vo J aURY AR5 |

How do we go
anywhere?

IR | -

JC = , I
Operation # meaning
1

| VY WIe WAy | o 9| J 1 | /] AL \ Yo 2 PSSy .\

Iop/fun

How do we go
anywhere?

IR | -
JC = , I
Operation # meaning

[UCU DI DIy (D | J | U

Iop/fun

3

Ve J] GURARU AR |

Where do we want
to go?

Operation

meaning

Where do we want
to go?

Where do we want
to go?

But the PC is in
bytes.

b
= g
o
P

Operation

JI
meaning

| VY DI Vel y | J | J 6

I
| /T 11 \PJI Py

Where do we want to
go?

But the PC is in bytes.

1 Iction

How do we use our
Zero bit?

How do we use our
Zero bit?

J

Operation Target address # meaning

Where do we go?

Operation Target address # meaning
0x0174837

4
I n
I

op/fun

rs
it
td
imm

Where do we go?

Operation Target address
0x0174837

meaning

Where do we go?

But this is only
bits, when
the PC is
bits.

Operation Target address
0x0174837

op/fun

meaning

rs
I B
td
imm

Where do we go?

But thisis only bits,
when the PCis bits.

Operation Target address
0x0174837

meaning

Where do we go?

But thisis only bits,
when the PCis bits.

i ij J)
Operation Target address
0x0174837 .

4 bits

meaning

\ D

But thisis only bits,
when the PCis bits.

28 bits

op/fun

rs
[T B
fd

The Whole Shebang

. I

Control Unit

» Set of control line values cause appropriate
actions to be taken at each step

 Finite state machine determines what needs
to be done at each step
+ Fetch

¢+ Decode
L 4

*

*

Start

Memory address

struction felch

regster fetch

Branch

Op ="J)

AP
« Compdation

POWite
PCSource = 10

. b <
computabion o \(» Execution completion
’n\‘«‘
2 e 6 8
ALUScA =1
ANLSrcA = 1 ALUSICA =1 AN USecB - 00
AScB =10 AUSecB - 00 ALUOp = 01
ALUOp = 00 ALUOp= 10 PCWriteCond
PCSourca = 01
P
> 3
por
%,
8 Memory Memory
% aooes: 005! *_ Atype completion
3 5 7
RagDst = 1
MemBead MemWrite it
loeD = 1 loeD = 1 g
= = MemtoReg =0

Writeback s 1ep

Single Cycle Latency

o

»
o
»

»-
F

Time Diagram
e

Cycle Time

* Not all instructions must go through
all steps
+ add doesn’t need to go to memory

* Single long clock cycle makes add take
as long as load

* Can we change this?

* Break single instruction execution into
small execution steps

Five Cycle Implementation

. I

Five Cycle Implementation

“I) ll |
rs
I —

td_ |
imm

FETCH

- EaE s s s ek e s s

Fivle Cycle Implementation
|

P

rs
It I
td
imm

|

| :
I 16 3I

I T

! .

DECODE

Five Cycle Implementation

o F Eadl

I
I
|
I
I
I

-
<
<
«

EXECUTE

Five Cycle Implementation

Five Cycle Implementation

WRITEBAC

-
[
gl [
»
o
»
o
»
-
<
<
«

How Many Cycles For:

* add
° SW
o |lw
* blt

°)

