
Smart Pointers

CMSC 240

Many examples thanks to the text C++
Primer Plus by Stephen Prata

linked off our useful resources page

RAII

• Recall: Resource Acquisition Is
Initilization

• A C++ programming
idiom/mantra/philosophy/technique

• You’ll see it in a lot of guides to
programming C++, so you should
know what it means

RAII

• The problem: Resources are
sometimes required to be allocated
from the heap
w E.g., static variables, locks

• These resources have to be released at
some point
w If not, memory leak: a long running

program with a memory leak will slowly
run out of memory, which can kill
performance

RAII

• You don’t have any long running
programs?
w Do you keep a web browser open?
w Do you sometimes keep Microsoft Word

or other text editing programs open while
you are creating documents?

w Do you keep your Outlook Mail program
open for days at a time?

w Then you have long running programs
§ And so do airlines, ISPs, etc.

RAII

• So, dynamically allocating memory is
not a problem as long as you
remember to deallocate that memory
when you’re done with it.

• General advice: (Thanks Steven Prata
(from C++ Primer Plus): “..a solution
involving the phrase ‘just remember
to’ is seldom the best solution.”

RAII

• But consider: memory allocated
automatically (on the stack) is
automatically deallocated when it goes out
of scope

• Thought: Can we somehow give
ownership of a resource allocated
dynamically to an object that is allocated
automatically
w If so, the dynamic resource can be returned

when the owning resource goes out of scope
(in destructor call)

Standard Example

• Traditional memory leak: the memory
dynamically allocated to ps is never
released
w This is wrong on several levels. Why?

Better (Correct) Example

But It’s Not Just Carelessness

• Here the programmer remembers to
include delete, but statement is never
reached if exception is thrown
w This also has issues. What?

But It’s Not Just Carelessness

• Note: When remodel() terminates, no
matter for what reason, its resources are
released
w So the memory occupied by ps is released
w But NOT the memory it points to

• It would be nice if memory pointed to by
ps was released as well

• If ps had a destructor, memory could be
released there

Smart Pointers

• But alas, ps is just an ordinary pointer, not
a class object, so it has no destructor

• If it were an object, then we could code a
destructor and the memory would be
freed on termination, for whatever reason,
of remodel()

• This is the idea behind smart pointers
w C++ 98: auto_ptr (deprecated)
w Modern C++: unique_ptr, shared_ptr,
weak_ptr

Smart Pointers

• Though auto_ptr has been deprecated,
we will still cover it, because you may run
into it (or, less likely, end up with an
implementation of C++ that is older than
C++11)

• Also, we won’t focus much on weak_ptr
• And note that all of these ptr classes are

templated: you specify the data type
pointed to

Smart Pointers

Smart Pointers

Smart Pointers

• All smart pointers in the memory header
file

Modern C++ Smart Pointers

Note each smart ptr
declared in a block so ptr
expires when execution
leaves the block

Guidelines For Smart Pointers

• In most cases, when one initializes a raw
pointer (or other handle to a resource),
pass the pointer to a smart pointer
immediately
w Microsoft docs: “In modern C++, raw pointers

are only used in small code blocks of limited
scope, loops, or helper functions where
performance is critical and there is no chance
of confusion about ownership.”

Thanks Microsoft, for this and the following code examples and guidelines
https://docs.microsoft.com/en-us/cpp/cpp/smart-pointers-modern-cpp?view=msvc-160

Guidelines For Smart Pointers

• Effectively, a smart pointer is a wrapper
for a raw pointer

• Access the encapsulated pointer using the
usual operators -> and *, which the smart
pointer class overloads so that they return
the encapsulated raw pointer

Guidelines For Smart Pointers

Note usual pointer
syntax

Essential Steps

1. Declare smart pointer as an automatic (local)
variable
w Do NOT use the new or malloc expression on

the smart pointer itself (Why not?)
2. In the type parameter, specify the pointed-to

type of the encapsulated pointer
3. Pass a raw pointer to a new-ed object in the

smart pointer constructor
w Some utility functions and smart pointer constructors

do this for you

Essential Steps

4. Use the overloaded -> and * operators to
access the object

5. Let the smart pointer delete the object

• And one other thing to avoid:

• What is the issue here?

Essential Steps

4. Use the overloaded -> and * operators to
access the object

5. Let the smart pointer delete the object

• And one other thing to avoid:

• When pvac expires, program applies delete
operator to non-heap memory!

Performance

• Smart pointers are designed to be as
efficient as possible in terms of both
memory and performance
w The only data member in unique_ptr is the

encapsulated pointer (so memory required is
exactly the same as for the raw pointer)

• The overloaded operators -> and * are not
significantly slower than using raw
pointers directly

Member Functions

• Smart pointers have their own member
functions which are accessed via the usual
“dot” notation
w E.g., some smart pointers have a reset()

method which releases the pointed to memory
before the smart pointer goes out of scope

Member Functions

Legacy Code

• Smart pointers provide methods that allow
access to the encapsulated raw pointer
w Which might be needed if one has to deal with

legacy code that does not accept smart
pointers

w Use the get() method to access raw pointer
• So you can manage memory in your own

code, but pass raw pointer if necessary

Legacy Code

Smart Pointer Considerations

• Why are there four smart pointers (well
three now) and why was auto_ptr
deprecated?

• Well, let’s start by considering
assignment:

• Can anyone see the issue here?

Smart Pointer Considerations

• Ways to avoid this issue:
w Define the assignment so that it makes a deep

copy, so that we end up with two distinct
equivalent objects

w Institute the concept of ownership, so that
only one smart pointer can own an object.
When that pointer is destructed, the object is
deleted
§ auto_ptr and unique_ptr both do this, though
unique_ptr is more restrictive

Smart Pointer Considerations

• Ways to avoid this issue:
w Reference counting: create an even smarter

pointer that keeps track of how many smart
pointers point to an object.
§ Only when the final pointer expires is the

destructor called to release the referenced object
§ This is what shared_ptr does

• Note these same strategies would apply to
the copy constructor

Smart Pointer Considerations

• There are good uses for each
• Let’s look at one example where
auto_ptr is a problem

• Note: to compile following example,
should NOT use the –std=c++17 flag!
w Many modern C++ compilers will yell that

they don’t recognize auto_ptr

Note behavior
is undefined, so
you might get
different output

• The problem: When films[2] is assigned to pwin,
ownership is transferred and films[2] no longer points
to the object
w films[2] becomes a null pointer

What about this?

Why unique_ptr is Better
than auto_ptr

• Based on the examples, it would seem we
need to look into differences between
these two

• Consider:

w Good: p1 stripped of ownership, so no double
free

w Bad: If p1 is subsequently used

Why unique_ptr is Better
than auto_ptr

• Based on the examples, it would seem we
need to look into differences between
these two

• Now consider this:

w Compiler won’t allow statement #6, so no
worry about using p3 after assignment

w Result: compile-time error vs. program crash

Why unique_ptr is Better
than auto_ptr

• Consider another example

This is some
code in main()

Why unique_ptr is Better
than auto_ptr

• demo() returns a temporary unique_ptr,
whose ownership is taken over by ps
w The returned unique_ptr is then destroyed
w But it’s OK because ps now owns the string
w And because temp is destroyed, no chance of it being

misused to access invalid data (so compiler allows it!)

Why unique_ptr is Better
than auto_ptr

• Question: is what is assigned to ps an lvalue or
an rvalue?

Why unique_ptr is Better
than auto_ptr

• So #1 is not allowed (pu1 stays around and
could cause damage) while #2 is allowed
because the temporary unique_ptr built in the
constructor is destroyed when ownership of the
string is passed to pu3

Recall: Container Classes

• I know you coded quite a few in CS 221, and
some in this class
w dynamic arrays (vector),
w queues (queue),
w stacks (stack),
w heaps (priority_queue),
w linked lists (list),
w trees (set),
w associative arrays (map)...

https://www.cplusplus.com/vector
https://www.cplusplus.com/queue
https://www.cplusplus.com/stack
https://www.cplusplus.com/priority_queue
https://www.cplusplus.com/list
https://www.cplusplus.com/set
https://www.cplusplus.com/map

Why unique_ptr is Better
than auto_ptr

• The selective behavior is one reason that
unique_ptr is better than auto_ptr

• Another: auto_ptr is banned (by
recommendation, not necessarily enforcement
by compiler) for use in Container classes
w If some container algorithm tries to do something along the lines

of #1 in the last example to the contents of a container
containing unique_ptr objects, you get a compiler-time error.

w If you do something like #2 with unique_ptr, compiler is fine
with it

w If you do something like #1 with auto_ptr in a container class,
you can get undefined behavior and hard to diagnose crashes

Why unique_ptr is Better
than auto_ptr

• Another: auto_ptr is banned (by
recommendation, not necessarily enforcement
by compiler) for use in Container classes
w If some container algorithm tries to do something along the lines

of #1 in the last example to the contents of a container
containing unique_ptr objects, you get a compiler-time error.

• What if you really want to do something like #1?
w After all, it’s really only bad if you do something unsafe with the

abandoned pointer.
w So what if you need to do something like #1 (think about how

one sometimes creates a temp object to store an element in an
ArrayList to swap entries or the like)?

Why unique_ptr is Better
than auto_ptr

• What if you really want to do something like #1?
w After all, it’s really only bad if you do something unsafe with the

abandoned pointer.
w So what if you need to do something like #1 (think about how

one sometimes creates a temp object to store an element in an
ArrayList to swap entries or the like)?

w std::move() helps us there (recall from move semantics)

Why unique_ptr is Better
than auto_ptr

Why unique_ptr is Better
than auto_ptr

• How is unique_ptr able to discriminate between safe
and unsafe uses? It uses move constructors and rvalue
references
w Aspects of C++ that did not exist when auto_ptr was designed

• If a program attempts to assign one unique_ptr to another, the
compiler allows it if the source object is a temporary rvalue and
disallows it if the source object has some duration”

Why unique_ptr is Better
than auto_ptr

• One final advantage: unique_ptr has a variant
that can be used with arrays. auto_ptr does
not.

• Recall that new has to be paired with delete and
new[] with delete[]
w auto_ptr has no version that handles the latter
w unique_ptr does

Why unique_ptr is Better
than auto_ptr

• One final advantage: unique_ptr has a variant
that can be used with arrays. auto_ptr does
not.

• Recall that new has to be paired with delete and
new[] with delete[]
w auto_ptr has no version that handles the latter
w unique_ptr does

• auto_ptr and shared_ptr should only be
used for memory allocated with new, not for
memory allocated with new[]

Selecting a Smart Pointer

• If your program uses more than one pointer to
an object, use shared_ptr
w E.g., you might have an array of pointers and use

auxiliary pointers to identify specific elements, like
the largest or smallest

w Or two kind of objects that both have pointers to a
third common object

• Or if you have an STL container of smart pointer
objects
w Many STL algorithms include copy or assignment

operations that work with shared_ptr, but not with
unique_ptr (compile-time error) or auto_ptr
(undefined behavior)

Selecting a Smart Pointer

• If your program does not need multiple pointers
to the same object, then unique_ptr is usually
the choice.
w Good choice for return type for function that returns a

pointer to memory allocated by new
• Can store unique_ptr in a container object as

long as you don’t use methods that copy or
assign one unique_ptr to another
w E.g., sort()

weak_ptr

• A special-case smart pointer used in
conjunction with shared_ptr

• A weak_ptr provides access to an object owned
by one or more shared_ptr, but does not
participate in reference counting

• Useful when you want to observe an object, but
don’t require it to stay alive

• Also required in some cases to break circular
references between shared_ptr instances

Example thanks to LearnCpp.com: https://www.learncpp.com/
cpp-tutorial/circular-dependency-issues-with-stdshared_ptr-and-stdweak_ptr/

https://www.learncpp.com/

std::make_shared

• From C++ reference:

So when declared, lucy is a shared_ptr to a Person named
“Lucy” and ricky is a shared_ptr to a Person named
“Ricky”. Both have use count of 1.

Note two Person objects created dynamically but neither deleted!

So What Happened?

• We know that when declared, both lucy and
ricky are pointers to the corresponding person
objects

• When partnerUp() is called, the m_partner
pointer for lucy points to ricky, and vice versa
w So now lucy and ricky.m_partner both point to
lucy

w Same with ricky and lucy.m_partner
• This is OK. It’s what shared_ptr is for

(multiple pointers pointing to same object)

So What Happened?

• Fact: destructors are called in LIFO order at the
end of a block
w There is a good reason for this. See

https://stackoverflow.com/questions/17238771/ord
er-of-the-destructor-calls-at-the-end-of-block-
program

https://stackoverflow.com/questions/17238771/order-of-the-destructor-calls-at-the-end-of-block-program
https://stackoverflow.com/questions/17238771/order-of-the-destructor-calls-at-the-end-of-block-program
https://stackoverflow.com/questions/17238771/order-of-the-destructor-calls-at-the-end-of-block-program

So What Happened?

• So, at end of main(), destructor for ricky is
called first. At that point, destructor for ricky
checks if there are any other shared_ptr
objects that co-own the Person “Ricky”. There
are (lucy’s m_partner), so destructor does not
deallocate Person Ricky, because that would
leave Person Lucy with a dangling pointer.

• At this point, there is one pointer to Person
Ricky, and two to Person Lucy

So What Happened?

• Next the destructor for lucy is called. It does
the same thing, seeing that there is another
shared_ptr object that co-owns Person Lucy,
so the destructor does not deallocate Person
Lucy, because that would leave Person Ricky
with a dangling pointer.

• The program then ends, but neither Person
Ricky nor Person Lucy has been deallocated!

Circular References

• Our example had a circular reference: a series of
references where each object references the
next and the last object references the first
w For previous example: Person Lucy refers to Person

Ricky, which in turn references Lucy
w Ex. Three objects A, B, C with A -> B -> C -> A

• Practical effect: Each object keeps the next
object alive, with the last object keeping the first
object alive
w I’ll let you work out why

weak_ptr

• This is where weak_ptr comes into play.
It can observe and access the same
objects as a shared_ptr, but it isn’t
included in the reference count, so it does
not prevent the objects from being
deallocated

weak_ptr

• Downside: you can’t use weak_ptr
directly
w You need to convert it to a shared_ptr to

use -> and *
• This is done with the lock() function

