
Concurrency

CMSC 240
All examples borrowed/modified from
C++ Crash Course by Josh Lospinoso

No Starch Press

Concurrency vs Parallelism

• Concurrency: Making progress on
more than one task at the same time
w Note this does not mean that any two

tasks are being worked on at the exact
same time
§ E.g., context switch

• Parallelism: Two or more actions
executing simultaneously
w Requires multiple processing units

Thanks Madhaven Nagarajan:
https://medium.com/@itIsMadhavan/concurrency-vs-parallelism-a-brief-review-b337c8dac350

Concurrency vs Parallelism

• From Art of Concurrency (Clay
Breshears): A system is said to
be concurrent if it can support two or
more actions in progress at the same
time. A system is said to be parallel if
it can support two or more actions
executing simultaneously.
w term in progress is key here

Concurrency vs Parallelism

• Concurrency is about dealing with lots of
things at once. Parallelism is about doing
lots of things at once.

• Application can be concurrent but not
parallel

• Application can be parallel but not
concurrent (e.g., single task whose parts are
farmed to multiple processors)
w So you don’t need multiple tasks to have

parallelism

Concurrency

• Concurrent programs have multiple
threads of execution (a.k.a. threads)

• In most runtime environments:
w OS acts as scheduler to determine when

thread executes its next instruction
w Each process can have multiple threads

§ Which share resources, such as memory
§ Because scheduler decides when threads

execute, programmer cannot rely on their
ordering
• So synchronization often required

Concurrency

Concurrency

Concurrency

Concurrency

• The tradeoff: programs can execute
multiple tasks in the same time period
w Which can result in serious speedup if run

on a multi-core processor or other
concurrent hardware

• In general: programmer initializes
threads, starts them running, then
deals with results as they are returned
w Sort of like sending off minions (threads)

to do your work

Concurrency in Modern C++

• First, thorough treatment requires an
entire book
w We just give a short intro

• In modern C++, achieve concurrency
by creating asynchronous tasks
w A task that does not immediately need a

result
• To launch, use std::async function

template in the <future> header

Aside: Variadic Functions

• Variadic functions take a variable
number of arguments
w E.g., printf – you provide format

specifier and variable number of
parameters

w Variadic functions declared by placing …
as the final parameter

w On invocation, compiler matches supplied
parameters against declared arguments.
Remainder are represented by …

Variadic Functions

• Variadic functions take a variable
number of arguments

• Extract individual arguments from
variadic arguments via utility functions
in the <cstdarg> header

Variadic Functions

• Variadic functions take a variable
number of arguments

• Extract individual arguments from
variadic arguments via utility functions
in the <cstdarg> header

This is actual C++ syntax,
not slide shorthand.

Variadic Functions

Variadic Functions

Variadic Functions

All variadic functions must
declare a va_list. Here it’s
called args

Variadic Functions

A va_list requires
initialization with va_start.
First argument to va_start is
a va_list. Second is the number
of variadic args.

Variadic Functions

Iterate over va_list using
the va_arg function. First
argument to va_arg is the
va_list. Second is the argument
type.

Variadic Functions

Once completed iterating,
call va_end with
the va_list structure.

Variadic Functions

• Variadic functions are a holdover from C
• Generally considered unsafe and a

security vulnerability
• Two major problems:

w Not type safe (note second argument to
va_args is a type)

w Number of elements in variadic arguments
must be tracked separately

w Compiler is no help with either

Variadic Functions

• Variadic templates are safer and better
performing method for implementing
variadic functions
w I’ll leave that for your own study

Concurrency in Modern C++

• First, thorough treatment requires an
entire book
w We just give a short intro

• In modern C++, achieve concurrency
by creating asynchronous tasks
w A task that does not immediately need a

result
• To launch, use std::async function

template in the <future> header

Concurrency in Modern C++

• Simplified async declaration

• First argument, which is optional, is the
launch policy, std::launch
w std::launch::async runtime creates a

new thread to launch your task
w std::launch::deferred runtime waits

until you need task result before executing
§ lazy evaluation

Concurrency in Modern C++

• First argument, which is optional, is the
launch policy, std::launch
w std::launch::async runtime creates a

new thread to launch your task
w std::launch::deferred runtime waits

until you need task result before executing
w Optional launch policy defaults to

async|deferred
§ Meaning it’s implementation dependent

Concurrency in Modern C++

• Second argument: a function object
representing task you want to execute
w No restriction on number or type of

arguments the function object accepts
w And it might return any type

Concurrency in Modern C++

• std::async is a variadic template with
a function parameter pack
w Bottom line: any arguments you pass

beyond function object are used to invoke
the function object when the task is
launched

• std::async returns a std::future
object

Concurrency in Modern C++

• A future is a template that holds the
value of an asynchronous task
w It has a single parameter: the type of the

asynchronous task’s return value
w E.g., if you pass a function object that

returns a string, async will return a
future<string>

Concurrency in Modern C++

• Given a future, you can interact with
an asynchronous task in three ways:
w Query the future about its validity
w Obtain the value from the future using

the get() method
w Check whether a task has completed

Query A future About Its
Validity

• A valid future has a shared state
associated with it
w So they can communicate the results of

the task
• Any future returned by async is valid

until you retrieve the asynchronous
task’s return value
w At which point shared state’s lifetime

ends

Query A future About Its
Validity

Query A future About Its
Validity

You may be asking: What’s with this thing? It’s actually a
constructor for a string. It’s an example of operator
overloading

Query A future About Its
Validity

The big difference (aside from notational convenience) is that
a string constructed with this operator can include null
characters inside the string

Example operator””s

Thanks cppreference.com

Query A future About Its
Validity

• Launch an asynchronous task that
simply returns a string

• Because async always returns a valid
future, valid() returns true

Query A future About Its
Validity

• If you default construct a future,
valid() will return false

Obtain the Value from a
future

• Obtain the value from the future
using the get() method

• If the asynchronous task has not yet
completed, the call to get() will block
the currently executed thread until the
result is available

Obtain the Value from a
future

• Obtain the value from the future
using the get() method

• Task is launched using call to asycn.
Results is obtained from returned
future

Obtain the Value from a
future

• If an asynchronous task throws an
exception, the future will collect it
and throw it when get() is called

Aside: The stdlib Chrono
Library

• Provides a variety of clocks in the
<chrono> header

• Useful for when you want to program
something that depends on time or for
timing your code

• Provides three clocks, all in the
std::chrono namespace, with each
providing a different guarantee

Aside: The stdlib Chrono
Library

• std::chrono::system_clock is the
system wide real-time clock
w A.K.A. the wall clock
w Provides elapsed time since an

implementation specific start date
§ Most use January 1, 1970 at midnight

Aside: The stdlib Chrono
Library

• std::chrono::steady_clock
guarantees that its value will never
decrease
w Might seem absurd, but measuring time is

complicated -- might have to deal with leap
seconds and/or inaccurate clocks

• Aside: I once had to deal with real-world
situation where triangle inequality
failed!
w So yes, this kind of stuff happens

Aside: The stdlib Chrono
Library

• std::chrono::high_resolution_clock
has the shortest tick period available
w tick is the smallest atomic change that the

clock can measure
§ I.e., the granularity of the clock

• Beware of situations where tick is, say,
millisecond, but clock is only updated
every half second!
w Mostly a historical issue now

Aside: The stdlib Chrono
Library

• Each clock supports the static member
function now(), which returns a time
point corresponding to the current
value of the clock

• time point represents a moment in
time

• chrono encodes time points using
std::chrono::time_point type

Aside: The stdlib Chrono
Library

• Using time_point objects is
relatively easy

• They provide a time_since_epoch()
method that returns the amount of
time lapsed between the time_point
and the clock’s epoch

• This elapsed time is called a duration

Aside: The stdlib Chrono
Library

• epoch is an implementation defined
reference point denoting the
beginning of the clock

• UNIX epoch (or POSIX time) begins on
January 1, 1970

• Windows epoch begins January 1,
1601
w Corresponding to beginning of a 400 year

Gregorian-calendar cycle

Aside: The stdlib Chrono
Library

• An alternate method to obtain a
duration from a time_point is to
subtract two of them

• A std::chrono:duration represents
the time between two time_point
objects

• Durations expose a count() method
that returns the number of clock ticks
in the duration

• Each of the auto variables are
time_point objects. And each of these
exposes the time_since_epoch()
method

Aside: The stdlib Chrono
Library

• time_since_epoch() returns a
duration, and the count() method of
that duration returns the number of
ticks

Aside: The stdlib Chrono
Library

Aside: The stdlib Chrono
Library

Any clock has a now()method

now() time_point

any time_point has a time_since_epoch() method

time_since_epoch() duration

Any duration has a count()method number of ticks

• duration objects can also be
constructed directly

• std::chrono namespace contains
helper functions for generating
durations

• std::chrono::chrono_literals
namespace offers User-defined literals
for creating durations

Aside: The stdlib Chrono
Library

Aside: The stdlib Chrono
Library

Note you don’t have to use those exact numerical values.
Also, for example, ms is similar to appending L to a long value

Aside: The stdlib Chrono
Library

• Chrono also supplies the function
template
std::chrono::duration_cast which
does pretty much what you’d expect:
converts a duration from one unit to
another (e.g., seconds to minutes)
w And it works, pretty much how you’d expect

Aside: The stdlib Chrono
Library

• std::chrono::duration_cast

Aside: The stdlib Chrono
Library

What you want to cast
What you want to cast to

• Waiting: You can use durations to
specify an amount of time for your
program to wait

• stdlib provides additional concurrency
primitives in the <threads> header
w Contains the non-member function
std::this_thread::sleep_for

w sleep_for accepts a duration argument
corresponding to how long you want your
thread to wait (or “sleep”)

Aside: The stdlib Chrono
Library

Aside: The stdlib Chrono
Library

So Let’s Use This

• Optimizing code requires accurate
measurement (to determine how long a
particular code path takes)

• Chrono is very useful for this
• The Stopwatch class defined in the

following (user defined, not in a standard
library) is an example of how you can
measure time in a code path

• The idea: a Stopwatch object keeps a
reference to a duration object

So Let’s Use This

• When the Stopwatch is constructed, the
time (via now()) is recorded

• When the Stopwatch is destructed, the time
since the start is recorded

• So, construct your Stopwatch, run your
task, destruct your Stopwatch

Stopwatch

• The result instance variable is a reference
to a duration (with nanosecond granularity)

• start is a time_point for a
high_resolution_clock

Stopwatch

• When the Stopwatch is constructed, result
parameter is assigned to the result
instance variable

• the time (via now()) is recorded

Stopwatch

• When the Stopwatch is destructed, result is
assigned a duration that records the
different between the current time and start
w Current time is obtained via now()

Using Stopwatch

What’s with the
apostrophes?

Using Stopwatch

What’s with the
parentheses? (Hint:
it’s not a method
body)

Using Stopwatch

What’s with the
volatile keyword?

volatile

• According to the standard: [..] volatile is a hint to
the implementation to avoid aggressive
optimization involving the object because the value
of the object might be changed by means
undetectable by an implementation.[...]

volatile

• In English: The compiler can see that the value of n
never changes, so it might try to optimize away the
for loop (thus avoiding the conditional check on each
iteration, which can involve fetching the value of the
variable i, comparing to n, etc).

volatile

• In English: volatile says ”Don’t do this. Though it
looks like the value of n never changes, it may
actually at times change through means of which you
may not be aware and/or cannot detect.”

volatile

• In this particular example, we’re trying to time the
iterations of the loop, so we don’t want the loop to be
optimized out of the executable code. Since result
is declared volatile, and appears in the loop, the
compiler will not optimize out the loop.

Thanks to StackOverflow:
https://stackoverflow.com/questions/4437527/why-do-we-use-volatile-keyword

https://stackoverflow.com/questions/4437527/why-do-we-use-volatile-keyword

Back to the futures

Check Whether an Asynchronous
Task Has Completed

• Use std::wait_for if you have a
duration object

• Use std::wait_until if you have a
time_point object

• Both return a std::future_status

Check Whether an Asynchronous
Task Has Completed

• std::future_status can have one of
three values
w future_status::deferred task will be

evaluated lazily, so task will execute once
you call get()

w future_status::ready task has
completed and result is ready

w future_status::timeout task is not
ready

• If task completes before assigned waiting
period, async will return early

An Example Using wait_for

An Example Using wait_for

• First, a task launched with asycn, which just waits for
100ms before returning

• Next, call wait_for with 25ms. Because 25ms is less
than 100ms, we expect that task is still sleeping, so
wait_for returns future_status::timeout.

• Call wait_for again and wait for up to another 100ms.
• Because second wait_for will finish after task, wait_for

returns a future_status::ready

An Example Using wait_for

• Technically, these assertions are not guaranteed
to pass. this_thread::sleep_for is not
exact. The OS is responsible for scheduling
threads. It might schedule the sleeping thread
later than the specified duration.

An Example: Factoring

First: Doing it serially
Second: Doing it with threads

An Example Using wait_for

An Example Using wait_for

Note that this is
NOT an efficient
factoring algorithm!

So, concurrent programming is
easy, right?

So, concurrent programming is
easy, right?

Only if your threads don’t have
to be synchronized and don’t

involve sharing mutable data…

What the
heck are
these?!

Do you ever get the feeling that
every time I show you a code
example I also have to explain

another aspect of C++?

Do you ever get the feeling that
every time I show you a code
example I also have to explain

another aspect of C++?

If so, you’re right. There is a lot
to this language! So…

Recall: Lambda Captures

to_count captured and can now be used within lambda’s body

lambda version of CountIf

Lambda Captures

• Lambda captures can be used to make
available to the lambda any local
variables in the procedure in which the
lamda appears (they can be used
within the lambda body)

• To capture all of the local variables by
value, the syntax is [=]

• To capture all of the local variables by
reference, the syntax is [&]

So now you
know what
these are:
makes both
local
variables
captured by
value

You Might Think…

• That since eat_cans() (which decrements
tin_cans_available) and
deposit_cans() (which increments it)
are both called the same number of times, that
at the end, tin_cans_available would
be zero…

You Might Think…

• That since eat_cans() (which decrements
tin_cans_available) and
deposit_cans() (which increments it)
are both called the same number of times, that
at the end, tin_cans_available would
be zero…

• But you’d be wrong. The value of
tin_cans_available at the end of the
program is dependent on the exact order in
which the instances of the two threads execute

You Might Think…

• But you’d be wrong. The value of
tin_cans_available at the end of the
program is dependent on the exact order in
which the instances of the two threads execute

• And this varies from execution to execution in
unpredictable ways

• This is called a race condition, because the
result depends on which threads execute first

Let’s Run the Code

So What Caused This?

• Note that in order to increment or decrement
tin_cans_available, the variable first
has to be read
w Otherwise you can’t know what you are

incrementing or decrementing
• So sequence is “read, compute, write”
• In following use cans_available for

space reasons

So What Caused This?

• Value in prens is result of task
• Note value of cans_available does not

change until written

deposit_cans eat_cans cans_available
Read cans_available (0) 0

Read cans_available (0) 0
Compute cans_available+1
(1)

0

Compute cans_available-1 (-1) 0
Write cans_available+1 (1) 1

Write cans_available-1 (-1) -1

So What Caused This?

• The fundmental problem: Unsynchronized
access to mutually shared data
w Remember, at machine language level, instructions

for reading, computing, writing, are separate

deposit_cans eat_cans cans_available
Read cans_available (0) 0

Read cans_available (0) 0
Compute cans_available+1
(1)

0

Compute cans_available-1 (-1) 0
Write cans_available+1 (1) 1

Write cans_available-1 (-1) -1

So What Can We Do?

• Synchronization primitives
• Three covered (briefly) in your text

w mutexes
w condition variables
w locks

• Don’t think we’ll get to all of them, but we’ll
see
w Again, the goal in CS 240 is an introduction…

mutex

• The term mutex is short for mutual exclusion
algorithm

• Mutexes support two operations:
w Lock: When a thread needs to access shared data, it

locks the mutex
§ Which can block the thread if another thread already has the

lock
w Unlock: When a thread no longer needs access to the

data
• <mutex> header exposes several mutex options

mutex

• The term mutex is short for mutual exclusion
algorithm

• <mutex> header exposes several mutex options
w Ex: std::mutex -- basic mutual exclusion
w Ex. std::timed_mutex – mutual exclusion with a

timeout
§ If the mutex is not available by the specified duration or
time_point, return

w Lot’s more. We’ll only cover std::mutex

mutex

• mutex has only a single default constructor
• To obtain mutual exclusion, call either

w lock: accepts no arguments and returns void. Thread
blocks until mutex becomes available

w try_lock: accepts no arguments and returns a bool.
It returns immediately. If the try_lock successfully
obtained mutual exclusion, it returns true and the
calling thread now owns the lock. If not successful, it
returns false and calling thread does not own the lock

• To release lock: call unlock (no args, returns
void)

Note that each
thread acquires
a lock before
modifying
tin_cans_available

How Are mutexes
Implemented?

• Several ways
• One simple way: spin lock

w Thread executes a loop until the lock is
released

w Advantage: usually minimizes amount of
time between one thread releasing the
lock and another acquiring it

w Disadvantage (big): CPU is spending time
checking for lock availability when
another thread could be progressing

How Are mutexes
Implemented?

• More modern (e.g., Windows)
• Mutexes based on asynchronous

procedure calls
w Roughly: thread waiting on mutex goes

into a wait state. When lock becomes
available, OS wakes up the waiting
thread and hands off ownership of the
lock

w Advantage: other threads can progress
while thread is waiting on lock

How Are mutexes
Implemented?

• Usually: don’t need to worry about
how mutexes are implemented on
your system…
w Unless the become a bottleneck in your

program

A Problem…

• Suppose a thread acquires a lock,
then fails to unlock
w E.g., because the thread throws an

exception
w Then your program can halt

• Better alternative than manual
handling of mutexes

Recall RAII

• You DO recall what RAII means?

Recall RAII

• Resource Acquisition Is Initialization
• General idea (and an important

modern C++ programming principle):
Bind the the life cycle of a resource
that must be acquired (e.g. dynamic
memory, mutex) to the lifetime of an
object

• You do this when you acquire
dynamic memory in a constructor and
return it in a destructor

Recall RAII

• Resource Acquisition Is Initialization
• The Standard Library provides, in the
<mutex> header, RAII class templates
for handling mutexes

• Ex. std::lock_guard: a non-
copyable, non-movable RAII wrapper
that accepts a mutex in its
constructor, where it calls lock. It
then calls unlock in the destructor

lock_guard

• Basically, construct a lock_guard at
the beginning of any scope where you
need synchronization

• Safer than manual handling of
synchronization

• And does not add any runtime cost
over manual handling of mutexes
w Though mutexes usually involve

significant runtime costs, no matter how
you handle them.

Note lock_guard
is a parametrized
type

Aside: time

• Yes, the Stopwatch we built is nice for
seeing how long a code path takes to
execute

• But sometimes you just want to know
how long an entire program takes

• An in Linux, there is a nice command
for doing that: time

Aside: time

• Just type time followed by the
program/command on the command
line and time will provide you with
three values:
w real: total time taken by

program/command
w user: time taken by program in user mode
w sys: time taken by program in kernel mode

Back to the Goat Rodeo

• Clearly both of the synchronized
versions of goat_rodeo took
significantly more time than the
unsynchronized (but erroneous)
version
w In general, one can create very fast code if

one is not concerned with getting correct
results
§ E.g., a clock implementation that always

returns 10:00 is very fast, but only correct
twice a day

Back to the Goat Rodeo

• Clearly both of the synchronized
versions of goat_rodeo took
significantly more time than the
unsynchronized (but erroneous)
version

• Acquiring and releasing a lock takes
significantly more time than
incrementing or decrementing an int
w And goat rodeo does both 1,000,000

times

There is No Free Lunch

• When it comes to synchronization,
there is no free lunch
w There are potential “Lightweight” solutions

§ E.g. Isotach, a UVA research project in the late
1990s

w But ultimately, you have to pay the price

There is No Free Lunch

• When it comes to synchronization,
there is no free lunch
w There are potential “Lightweight” solutions

§ E.g. Isotach, a UVA research project in the late
1990s

w But ultimately, you have to pay the price
w But…

Atomics

• Sometimes you can do things a bit
more efficiently using atomics

• Atomic operations, which I’ve
mentioned before, means “indivisible
w Atom comes from the Greek atomos which

means indivisible
• An atomic operation is one that occurs

as an indivisible unit
w I.e., another thread cannot observe the

observation part way through

Atomics

• We made accesses to tin_cans_available
atomic by using locks

• There is another way: std::atomic
class template in the <atomic> header
w Provides primitives often used in lock-free

concurrent programming
w How? On many modern architectures, the

CPUs support atomic instructions
§ So you’re getting synchronization in hardware,

rather than software, which can be faster

Atomics

• We’ll discuss one example using
atomics, but be warned: Devising your
own lock-free solution is incredibly
difficult to do correctly and is best
left to experts!

• However, in some very simple
situations (e.g., goat_rodeo) you can
use std::atomic relatively easily

std::atomic Template Specialization for
Fundamental Types

