
“You’ve got to be very careful if you don’t
know where you’re going, because you might
not get there.”

Yogi Berra

Thanks to Professor Kirstie Hawkey for providing these slides!

There is no Silver Bullet
Primary thing to remember with SDLC
methods!
It does NOT mean that there is no one
method that will work in all cases
It means: “There is no single
development, in either technology or
management technique, which by itself
promises even one order-of-magnitude
improvement within a decade in
productivity, in reliability, in
simplicity”
Fred Brooks, No Silver Bullet --
Essence and Accident in Software
Engineering, Proceedings of the IFIP
Tenth World Computing Conference:
1069–1076, 1986

SDLC Model

A framework that describes the
activities performed at each
stage of a software development
project.

Aside: You Own a Construction
Company

Not a small one – you build
skyscrapers
Do you just start pouring concrete
for the foundation or do you do a
lot of planning? Why?

Aside: You Own a Construction
Company

You may have built skyscrapers
before, but each one is
effectively custom built.
Clients are paying a lot of money
You’re paying a lot of money
Materials and labor, among other
costs

Once you’ve started, it’s going to
be very difficult to change things
up

Aside: You Own a Construction
Company

What if the customer doesn’t like
the finished product?
For that matter, how will the
customer anticipate the finished
product?
For that matter, how do you know
what the customer wants in the
first place?
They might actually want things
that are different than what they
think they want
And may not realize until it’s
built

Aside: You Own a Construction
Company

If you’ve built similar buildings
before, then you might have a good
idea of the time and cost

Aside: You Own a Construction
Company

But what if this building requires
things that have never been done
before?

Aside: You Own a Construction
Company

But what if this building requires
things that have never been done
before?

Aside: You Own a Construction
Company

But what if this building requires
things that have never been done
before?

Aside: You Own a Software
Company

What makes you think that software
doesn’t have many of the same
issues?
It does. So when building large
software, you had better have a
good development model!
It’s no guarantee
But it greatly increases the
likelihood of a successful
project

Waterfall Model

Requirements – defines
needed information,
function, behavior,
performance and interfaces.

Design – data structures,
software architecture,
interface representations,
algorithmic details.

Implementation – source
code, database, user
documentation, testing.

Waterfall Strengths

Easy to understand, easy to use
Provides structure to
inexperienced staff
Milestones are well understood
Sets requirements stability
Good for management control (plan,
staff, track)
Works well when quality is more
important than cost or schedule

Waterfall Deficiencies

All requirements must be known upfront
Deliverables created for each phase are
considered frozen – inhibits flexibility
Can give a false impression of progress
Does not reflect problem-solving nature
of software development – iterations of
phases
Integration is one big bang at the end
Little opportunity for customer to
preview the system (until it may be too
late)

When to use the Waterfall Model

Requirements are very well known
Product definition is stable
Technology is understood
New version of an existing product
Porting an existing product to a new
platform.

High risk for new systems because of
specification and design problems.
Low risk for well-understood developments
using familiar technology.

V-Shaped SDLC Model

A variant of the
Waterfall that
emphasizes the
verification and
validation of the
product.

Testing of the
product is planned
in parallel with a
corresponding phase
of development

V-Shaped Steps
Project and
Requirements Planning
– allocate resources

Product Requirements
and Specification
Analysis – complete
specification of the
software system

Architecture or High-
Level Design – defines
how software functions
fulfill the design

Detailed Design –
develop algorithms for
each architectural
component

Production, operation and
maintenance – provide for
enhancement and
corrections

System and acceptance
testing – check the
entire software system in
its environment

Integration and Testing –
check that modules
interconnect correctly

Unit testing – check that
each module acts as
expected

Coding – transform
algorithms into software

V-Shaped Strengths

Emphasize planning for
verification and validation of
the product in early stages of
product development
Each deliverable must be
testable
Project management can track
progress by milestones
Easy to use

V-Shaped Weaknesses

Does not easily handle concurrent
events
Saw this 100 times. No one says
why this is with any specificity

Does not handle iterations or phases
Does not easily handle dynamic
changes in requirements
Like Waterfall model, not flexible

Does not contain risk analysis
activities

When to use the V-Shaped Model

Excellent choice for systems
requiring high reliability –
hospital patient control
applications
All requirements are known up-
front
When it can be modified to handle
changing requirements beyond
analysis phase
Solution and technology are known

Protoyping: Basic Steps
Identify basic requirements
Including input and output info
Details (e.g., security) generally ignored
That’s not a good thing, but not unique to
prototyping

Develop initial prototype
UI first

Review
Customers/end –users review and give
feedback

Revise and enhance the prototype & specs
Negotiation about scope of contract may be
necessary

Dimensions of prototyping

Horizontal prototype
Broad view of entire system/sub-system
Focus is on user interaction more than
low-level system functionality (e.g.,
database access)
Useful for:
Confirmation of UI requirements and
system scope
Demonstration version of the system to
obtain buy-in from business/customers
Develop preliminary estimates of
development time, cost, effort

Dimensions of Prototyping

Vertical prototype
More complete elaboration of a single
sub-system or function
Useful for:
Obtaining detailed requirements for a
given function
Refining database design
Obtaining info on system interface
needs
Clarifying complex requirements by
drilling down to actual system
functionality

Types of prototyping

Throwaway/rapid/close-ended prototyping
Creation of a model that will be discarded
rather than becoming part of the final
delivered software
After preliminary requirements gathering,
used to visually show the users what their
requirements may look like when implemented

Focus is on quickly developing the model
focus is not on good programming practices
Can Wizard of Oz things

Wizard of Oz Prototyping

Requires three things:
Script: tells what is to take place
Person: Acts as end user
Human “wizard”: simulates the end
product

Person may not know that the “software”
is actually a human simulating behavior
WOZ name comes from Toto pulling back

curtain to reveal Wizard is actually a
person pulling levers

Wizard of Oz Prototyping

Purpose is to improve user experience
(UX)

Fidelity of Protype

Low-fidelity
Paper/pencil
Mimics the functionality, but does
not look like it

Often implemented with
interpreted scripting language
(e.g., Python)
Goal is not typically optimization
at this stage

Fidelity of Protype

Medium to High-fidelity
GUI builder
“Click dummy” prototype – looks like the
system, but does not provide the
functionality
Or provide functionality, but have it be
general and not linked to specific data

http://www.youtube.com/watch?v=VGjcFouSlp
k

http://www.youtube.com/watch?v=5oLlmNbxap
4&feature=related

http://www.youtube.com/watch?v=VGjcFouSlpk
http://www.youtube.com/watch?v=5oLlmNbxap4&feature=related

Throwaway Prototyping steps

Write preliminary requirements
Design the prototype
User experiences/uses the
prototype, specifies new
requirements
Repeat if necessary
Write the final requirements
Develop the real products

Evolutionary Prototyping
A.k.a breadboard prototyping
(analogous to electronics breadboard)

Goal is to build a very robust
prototype in a structured manner and
constantly refine it
The evolutionary prototype forms the
heart of the new system and is added to
and refined
Allow the development team to add
features or make changes that were not
conceived in the initial requirements

Evolutionary Prototyping

Evolutionary Prototyping Model

Developers build a prototype during
the requirements phase
Prototype is evaluated by end users
Users give corrective feedback
Developers further refine the
prototype
When the user is satisfied, the
prototype code is brought up to the
standards needed for a final
product.

EP Steps
A preliminary project plan is developed
A partial high-level paper model is created
The model is source for a partial
requirements specification
A prototype is built with basic and
critical attributes
The designer builds
the database
user interface
algorithmic functions

The designer demonstrates the prototype, the
user evaluates for problems and suggests
improvements.
This loop continues until the user is
satisfied

EP Strengths

Customers can “see” the system
requirements as they are being gathered
Developers learn from customers
A more accurate end product
Unexpected requirements accommodated
Allows for flexible design and
development
Steady, visible signs of progress
produced
Interaction with the prototype
stimulates awareness of additional
needed functionality

Incremental prototyping

Final product built as separate
prototypes
At the end, the prototypes are
merged into a final design

Extreme Prototyping

Often used for web applications
Development broken down into 3 phases,
each based on the preceding phase
1. Static prototype consisting of HTML

pages
2. Screens are programmed and fully

functional using a simulated services
layer
Fully functional UI is developed with
little regard to the services, other than
their contract

3. Services are implemented

Prototyping advantages
Reduced time and cost
Can improve the quality of requirements and
specifications provided to developers
Early determination of what the user really
wants can result in faster and less
expensive software

Improved/increased user involvement
User can see and interact with the
prototype, allowing them to provide
better/more complete feedback and specs
Misunderstandings/miscommunications
revealed
Final product more likely to satisfy their
desired look/feel/performance

Disadvantages of prototyping 1

Insufficient analysis
Focus on limited prototype can distract
developers from analyzing complete
project
Think of house with lots of “add ons”

May overlook better solutions
Conversion of limited prototypes into
poorly engineered final projects that are
hard to maintain
Limited functionality may not scale well
if used as the basis of a final
deliverable
May not be noticed if developers too focused
on building prototype as a model

Disadvantages of prototyping 2

User confusion of prototype and
finished system
Users can think that a prototype
(intended to be thrown away) is actually
a final system that needs to be polished
Unaware of the scope of programming needed
to give prototype robust functionality

Users can become attached to features
included in prototype for consideration
and then removed from final specification
Especially problematic if those features
turn out to be difficult/impossible to
implement at production quality (e.g.,
required infrastructure unavailable)

Disadvantages of prototyping 3

Developer attachment to
prototype
If spend a great deal of
time/effort to produce, may become
attached
Might try to attempt to convert a
limited prototype into a final
system
Bad if the prototype does not have
an appropriate underlying
architecture

Disadvantages of prototyping 4

Excessive development time of the
prototype
Prototyping supposed to be done quickly
If developers lose sight of this, can try
to build a prototype that is too complex
For throw away prototypes, the benefits
realized from the prototype (precise
requirements) may not offset the time
spent in developing the prototype –
expected productivity reduced
Users can be stuck in debates over
prototype details and hold up development
process

Disadvantages of prototyping 5

Expense of implementing prototyping
Start up costs of prototyping may be high
Expensive to change development
methodologies in place (re-training, re-
tooling)
Slow development if proper training not in
place
High expectations for productivity
unrealistic if insufficient recognition of
the learning curve

Lower productivity can result if overlook
the need to develop corporate and project
specific underlying structure to support the
technology

Best uses of prototyping

Most beneficial for systems that
will have many interactions with
end users
The greater the interaction
between the computer and the user,
the greater the benefit of
building a quick system for the
user to play with
Especially good for designing good
human-computer interfaces

Spiral SDLC Model

Adds risk
analysis, and
4gl RAD
prototyping to
the waterfall
model
Each cycle
involves the
same sequence
of steps as
the waterfall
process model

4gl = “fourth generation language”
RAD = “Rapid Application Development” (e.g., rapid prototyping)

Aside: Generation Languages
First generation (1gl): Machine
language
2gl: Low-level assembly language:
hardware dependent
3gl: High-level languages: C, C++,
Java, Javascript, Visual Basic
4gl: Statements similar to
statements in a human language:
Perl, Python, PHP, Ruby, SQL
5gl: Programming languages that
contain visual tools to help develop
a program: Mercury, OPS5, Prolog

Spiral Quadrant: Determine objectives, alternatives and
constraints

Objectives: functionality,
performance, hardware/software
interface, critical success
factors, etc.
Alternatives: build, reuse, buy,
sub-contract, etc.
Constraints: cost, schedule,
interface, etc.

Spiral Quadrant: Evaluate alternatives,
identify and resolve risks

Study alternatives relative to
objectives and constraints
Identify risks: lack of
experience, new technology, tight
schedules, poor process, etc.
Resolve risks: evaluate if money
could be lost by continuing system
development

Spiral Quadrant: Develop next-level
product

Typical activites:
Create a design
Review design
Develop code
Inspect code
Test product

Spiral Quadrant: Plan next phase

Typical activities
Evaluate already developed
project
Develop project plan
Develop configuration management
plan
Develop a test plan
Develop an installation plan
Develop plan for next spiral

Spiral Model Strengths

Provides early indication of insurmountable
risks, without much cost
Users see the system early because of rapid
prototyping tools
Critical high-risk functions are developed
first
The design does not have to be perfect
Users can be closely tied to all lifecycle
steps
Early and frequent feedback from users
Cumulative costs assessed frequently

Spiral Model Weaknesses
Time spent for evaluating risks too large for
small or low-risk projects
Time spent planning, resetting objectives,
doing risk analysis and prototyping may be
excessive
The model is complex
Risk assessment expertise is required
Spiral may continue indefinitely
Developers must be reassigned during non-
development phase activities
May be hard to define objective, verifiable
milestones that indicate readiness to proceed
through the next iteration

When to use Spiral Model

When creation of a prototype is appropriate
When costs and risk evaluation is important
For medium to high-risk projects
Long-term project commitment unwise because
of potential changes to economic priorities
Users are unsure of their needs
Requirements are complex
New product line
Significant changes are expected (research
and exploration)

The Rise and Fall of Waterfall

http://www.youtube.com/watch?v=
X1c2--sP3o0&NR=1&feature=fvwp
Warning: bad language at 3:50!
(hands over ears if easily
offended!)

http://www.youtube.com/watch?v=X1c2--sP3o0&NR=1&feature=fvwp

Agile SDLC’s

Speed up or bypass one or more
life cycle phases
Usually less formal and reduced
scope
Used for time-critical
applications
Used in organizations that
employ disciplined methods

Some Agile Methods

Rapid Application Development (RAD)
Incremental SDLC
Scrum
Extreme Programming (XP)
Adaptive Software Development (ASD)
Feature Driven Development (FDD)
Crystal Clear
Dynamic Software Development Method
(DSDM)
Rational Unify Process (RUP)

Agile vs Waterfall Propaganda

https://www.youtube.com/watch?v
=CKD9nWVsDzc

https://www.youtube.com/watch?v=CKD9nWVsDzc

RAD is not Rapid Prototyping

Rapid application development
(RAD)is a method for rapidly
developing the final product
As the title implies, you are
rapidly developing the
application

Rapid prototyping uses a throwaway
prototype in order to better learn
the needs/requirements of the user

Rapid Application Model (RAD)

Requirements planning phase (a workshop
utilizing structured discussion of
business problems)
User description phase – automated tools
capture information from users
Construction phase – productivity tools,
such as code generators, screen
generators, etc. inside a time-box. (“Do
until done”)
Cutover phase -- installation of the
system, user acceptance testing and user
training

Aside: Timeboxing

Timeboxing is a planning technique common
in planning projects, where the schedule is
divided into a number of separate time
periods (timeboxes, normally two to six
weeks long), with each part having its own
deliverables, deadline and budget.

Aside: Timeboxing
● Timeboxes are used as a form of risk management,

especially for tasks that may easily extend past
their deadlines. The end date (deadline) is one of
the primary drivers in the planning and should not be
changed as it is usually linked to a delivery date of
the product. If the team exceeds the deadline, the
team failed in proper planning and/or effective
execution of the plan. This can be the result of: the
wrong people on the wrong job (lack of communication
between teams, lack of experience, lack of
commitment/ drive/motivation, lack of speed) or
underestimation of the complexity of the
requirements.

● When the team exceeds the deadline, the following
actions might be taken after conferring with the
Client:

Dropping requirements of lower impact (the ones
that will not be directly missed by the user)
Working overtime to compensate for the time lost
Moving the deadline

Requirements Planning Phase

Combines elements of the system
planning and systems analysis phases
of the System Development Life Cycle
(SDLC).
Users, managers, and IT staff members
discuss and agree on business needs,
project scope, constraints, and system
requirements.
It ends when the team agrees on the
key issues and obtains management
authorization to continue.

User Design Phase

Users interact with systems analysts and
develop models and prototypes that represent
all system processes, inputs, and outputs.
Typically use a combination of Joint
Application Development (JAD) techniques and
CASE tools to translate user needs into
working models.
A continuous interactive process that allows
users to understand, modify, and eventually
approve a working model of the system that
meets their needs.

JAD Techniques

http://en.wikipedia.org/wiki/Jo
int_application_design

CASE Tools
http://en.wikipedia.org/wiki/Co
mputer-
aided_software_engineering

http://en.wikipedia.org/wiki/Joint_application_design
http://en.wikipedia.org/wiki/Computer-aided_software_engineering

Construction Phase

Focuses on program and application
development task similar to the
SDLC.
However, users continue to
participate and can still suggest
changes or improvements as actual
screens or reports are developed.
Its tasks are programming and
application development, coding,
unit-integration, and system
testing.

Cutover Phase

Resembles the final tasks in the
SDLC implementation phase.
Compared with traditional methods,
the entire process is compressed.
As a result, the new system is
built, delivered, and placed in
operation much sooner.
Tasks are data conversion, full-
scale testing, system changeover,
user training.

RAD Strengths

Reduced cycle time and improved
productivity with fewer people means lower
costs
Time-box approach mitigates cost and
schedule risk
Customer involved throughout the complete
cycle minimizes risk of not achieving
customer satisfaction and business needs
Focus moves from documentation to code
(WYSIWYG).
Uses modeling concepts to capture
information about business, data, and
processes.

RAD Weaknesses

Accelerated development process
must give quick responses to the
user
Risk of never achieving closure
Hard to use with legacy systems
Requires a system that can be
modularized
Developers and customers must be
committed to rapid-fire activities
in an abbreviated time frame.

When to use RAD

Reasonably well-known requirements
User involved throughout the life
cycle
Project can be time-boxed
Functionality delivered in
increments
High performance not required
Low technical risks
System can be modularized

Incremental SDLC Model

Construct a partial
implementation of a total
system
Then slowly add increased
functionality
The incremental model
prioritizes requirements
of the system and then
implements them in groups.
Each subsequent release of
the system adds function
to the previous release,
until all designed
functionality has been
implemented.

Incremental Model Strengths

Develop high-risk or major functions first
Each release delivers an operational
product
Customer can respond to each build
Uses “divide and conquer” breakdown of
tasks
Lowers initial delivery cost
Initial product delivery is faster
Customers get important functionality early
Risk of changing requirements is reduced

Incremental Model Weaknesses

Requires good planning and design
Requires early definition of a
complete and fully functional
system to allow for the definition
of increments
Well-defined module interfaces are
required (some will be developed
long before others)
Total cost of the complete system
is not lower

When to use the Incremental Model

Risk, funding, schedule, program
complexity, or need for early
realization of benefits.
Most of the requirements are known up-
front but are expected to evolve over
time
A need to get basic functionality to the
market early
On projects which have lengthy
development schedules
On a project with new technology

Scrum:

Scrum in 13 seconds:
http://www.youtube.com/watch?v=9DKM9HcRnZ8&f
eature=related

Scrum in 10 minutes:
https://www.youtube.com/watch?v=XU0llRltyFM

● More Scrum Slides
http://www.mountaingoatsoftware.com/system/p
resentation/file/129/Getting-Agile-With-
Scrum-Cohn-NDC2010.pdf?1276712017
Scalability of scrum addressed on slides 33-
35

http://www.youtube.com/watch?v=9DKM9HcRnZ8&feature=related
https://www.youtube.com/watch?v=XU0llRltyFM
http://www.mountaingoatsoftware.com/system/presentation/file/129/Getting-Agile-With-Scrum-Cohn-NDC2010.pdf?1276712017

Aside: User Stories

Informal, general explanation of a
software feature
Written from perspective of the
software user
Articulates how feature will
provide value to the customer
Not software systems requirements

Thanks to: Max Rehkopf, “User Stories With Examples and Templates”
https://www.atlassian.com/agile/project-management/user-stories

https://www.atlassian.com/agile/project-management/user-stories

Aside: User Stories

User story effectively puts end
user at the center of the
development conversation
Non-technical language provides
context for the development team
The team learns why they are
building a feature, what they are
building, and the value it
creates

User Story Template

“As a [persona], I [want to], [so
that].”
“As a [persona]”: Who are we building
this for? We’re not just after a job
title, we’re after the persona of the
person. Max. Our team should have a
shared understanding of who Max is.
We’ve hopefully interviewed plenty of
Max’s. We understand how that person
works, how they think and what they
feel. We have empathy for Max.

User Story Template

“Wants to”: Here we’re describing
their intent — not the features
they use. What is it they’re
actually trying to achieve? This
statement should be implementation
free — if you’re describing any
part of the UI and not what the
user goal is you're missing the
point.

User Story Template

“So that”: how does their immediate
desire to do this fit into their
bigger picture? What’s the overall
benefit they’re trying to achieve?
What is the big problem that needs
solving?

User Story Examples

● As Max, I want to invite my
friends, so we can enjoy this
service together.

● As Sascha, I want to organize my
work, so I can feel more in
control.

● As a manager, I want to be able to
understand my colleagues progress,
so I can better report our sucess
and failures.

When Team Decides to include
story in a sprint…

● Discuss functionality and
requirements the story requires
This is technical

● Requirements added to the story
● Often story scored on complexity
● Story broken into smaller pieces,
if necessary, to fit in sprint

● Determine what “done” means, time
to completion, etc.

Scrum advantages

Agile scrum helps the company in
saving time and money.
Scrum methodology enables projects
where the business requirements
documentation is hard to quantify
to be successfully developed.
Fast moving, cutting edge
developments can be quickly coded
and tested using this method, as a
mistake can be easily rectified.

Scrum advantages

It is a lightly controlled method which
insists on frequent updating of the
progress in work through regular
meetings. Thus there is clear visibility
of the project development.
Like any other agile methodology, this
is also iterative in nature. It requires
continuous feedback from the user.
Due to short sprints and constant
feedback, it becomes easier to cope with
the changes.

Scrum advantages

Daily meetings make it possible to
measure individual productivity.
This leads to the improvement in the
productivity of each of the team
members.
Issues are identified well in
advance through the daily meetings
and hence can be resolved speedily
It is easier to deliver a quality
product in a scheduled time.

Scrum advantages

Agile Scrum can work with any
technology/ programming
language but is particularly
useful for fast moving web 2.0
or new media projects.
The overhead cost in terms of
process and management is
minimal thus leading to a
quicker, cheaper result.

Scrum disadvantages
Agile Scrum is one of the leading causes
of scope creep because unless there is a
definite end date, the project management
stakeholders will be tempted to keep
demanding new functionality.
If a task is not well defined, estimating
project costs and time will not be
accurate. In such a case, the task can be
spread over several sprints.
If the team members are not committed, the
project will either never complete or
fail.

Scrum disadvantages
It is good for small, fast moving projects as
it works well only with small team.
This methodology needs experienced team
members only. If the team consists of people
who are novices, the project cannot be
completed in time.
Scrum works well when the Scrum Master trusts
the team they are managing. If they practice
too strict control over the team members, it
can be extremely frustrating for them,
leading to demoralisation and the failure of
the project.

Scrum disadvantages

If any of the team members
leave during a development it
can have a huge adverse effect
on the project development
Project quality management is
hard to implement and quantify
unless the test team are able
to conduct regression testing
after each sprint.

Regression Testing

Actually should be called (and
rarely is) NON-regression
testing
Rerunning tests on previously
developed and tested modules to
ensure that they still perform
after a change
If not, that is a regression

