CMSC 240, Prof. Szajda, Spring 2021 Lab 2: String class in C++ Due: Thurs, Feb. 4, 5:00 pm

You will complete this lab individually. I will, however, assign you to a group of three so that you have
specific classmates with which you can discuss the lab. Note that this does not preclude you from discussing
the lab with classmates not in your group. Regardless of who you are discussing the lab with, all interactions
are governed by the empty hands policy (see the syllabus).

Assignment: Write your own String class to mimic some functionality from the String class in Java. As
much as possible, functionality of your methods should match the functionality provided by the String class
in Java, so visit the Java API for a refresher on what those methods should do..

You may use the C++ std: : string type as your instance variable, and use any methods provided by <string>
to help in your implementation of the required functionality belowﬂ

String();

String(const String& other);

String(const char* cString); // accepts a C-string literal, e.g., "Lilly"

“String();

std::string toString(); // returns a C++ string, not a String

int length();

String substring(int start, int end); // returns a String, not a std::string;
// follow Java convention on parameters

bool operator==(const String& other); // so one can use if (strl == str2)

String& operator=(const String& other); // so one can assign str2 = stri;

String& operator+=(const String& other); // so one can use str2 += stril;

Notes of interest:

e Overloaded operators, e.g., operator==, are covered in your text beginning on page 187.

e A reasonable API reference for the C++ libraries can be found at http://www.cplusplus.com/| (also
linked on the course web page).

e Appropriate use of the C++ std: : string methods will result in brief implementations for many of the
methods.

e For handling invalid indices to substring, you should throw an out-of-range exception defined in
<exception>. For example, you should include code similar to that below:

std::string msg = "Invalid arguments to substring: [" +
std::to_string(start) + ", " + std::to_string(end) + "]";
throw std::out_of_range(msg.c_str()); // note conversion from string to const charx

This will require a try-catch block in your tester — see the section on Exceptions in Chapter 4 of your
text. (For that matter, looking at the Object Storage Duration section at the beginning of the chapter
wouldn’t be a bad thing). See also std: :exception at the C++ API, if you are so inclined.

e Make sure to handle the case of a nullptr being passed as the C-string literal to your corresponding
constructor — throw an invalid-argument exception.

IThe interested student may also want to investigate move constructors and move assignment operators available in C++. For more
information, see the C++ API or http://bit.ly/move_constructor, Addressing this now is not a requirement, as we will cover move
constructors and assignments later in the semester

Due: Thurs, Feb. 4, 5:00 pm 1

http://www.cplusplus.com/
http://bit.ly/move_constructor

CMSC 240, Prof. Szajda, Spring 2021 Lab 2: String class in C++ Due: Thurs, Feb. 4, 5:00 pm

e I will provide a tester file on the course web page. It will do some testing, but you should (must)
expand it to do a more thorough job of testing. Part of the grading for this assignment will depend on
the number and quality of the tests that you add.

e In your submission, include a README. txt file describing your tests (don’t forget boundary/edge cases),
their results, and how they demonstrate the correctness of your implementation.

e Follow style guidelines — include a class block comment with name, date, and that describes the class;
include comments before each method; use inline comments as appropriate; make judicious use of
whitespace, good naming convention, consistent indentation, etc.

Submitting:

1. First, you will need to package your work into a tar archive file for submitting (tar is required here so
that you are required to learn how to use it). Let’s assume that you have stored all necessary files in
a directory called 1ab2 (which may contain subdirectories). From the parent directory of your 1lab2/
directory, execute the following command, replacing netID with your own netids:

tar -czvf cmsc240_lab2_netID.tgz lab2/*

This command will combine all the files and subdirectories in your 1ab2/ directory into a single tar
archive file named cmsc240_1ab2_netID.tgz. (Have a look at the tar man-page about the czvf
flags.)
Henceforth, we will refer to such a file as a “gzipped tarball”.

2. Verify the contents of your gzipped tarball. First, verify that it is of reasonable size (in bytes) and that

it is identified as a “gzip compressed data” file:

1s -1
file cmsc240_lab2_netID.tgz

The first command gives you a long listing of files in the directory, which should provide the size, in
bytes, of all of the files in the directory (well, not all - files that begin with a dot, like .bash_profile,
and some other special files, won’t show up). The file command provides the file type. In this case it
should say something like

testing.tar: POSIX tar archive
Next, check that the contents are what you expect:
tar -tzvf cmsc240_lab2_netID.tgz

This should give you a listing of the folders and files contained in your tarball.

3. Attach the gzipped tarball to an email to the appropriate assignment email address (as usual) to submit.

Naming:

As always, because all students will be submitting their lab to a single Box folder, the files can’t all be called
“Lab2.tar” or the like. Instead, they must have some indication of who completed the submission. Naming is
also important because I sometimes use software to grade submission, and my code expects specific naming
conventions. For this lab, your submission MUST be named cmsc240_lab2_netID.tar, where netID is your
netid.

Due: Thurs, Feb. 4, 5:00 pm 2

CMSC 240, Prof. Szajda, Spring 2021 Lab 2: String class in C++ Due: Thurs, Feb. 4, 5:00 pm

Submission:

The high level picture is that to submit any labs/project in this course, you send an email to a special email
address with your single submission file attached. This has the effect of placing your submission in the
appropriate Box folder. If your submission requires more than one file, you should tar or zip your files
together to create your single submission file.

The the email address for this lab is Lab2.mc3xkxmxju8fbyz70@u.box.com. Thus to submit this lab, you
should attach your tar or zip file to an email sent to the email address Lab2.mc3xkxmxju8fbyz7@u.box. com.

Due: Thurs, Feb. 4, 5:00 pm 3

