
CMSC 240, Prof. Szajda, Fall 2022 Lab 3: GDB Due: Tues, Sept. 20, 5:00 pm

Getting Started: You must use the Linux network — not the lab iMacs or your own Mac — to com-
plete this lab. Remotely log in to the Linux network, create a new lab3 directory in your cmsc240 di-
rectory, and then copy all the files and directories from the appropriate directory in my home directory:
∼dszajda/outbox/cs240/lab3/

Answers to all underlined questions must go in the cmsc240 lab3 NETID.txt (which you must rename (so
that it contains your netID!). This file, in addition to being your submission file, also contains parts of
questions.

Lab Exercise #1:

• Use the appropriate commands to inspect the man pages for atoi() and atof().

1. What does the atoi() function do?

2. What does the atof() function do?

• Now open ProgramOne.cpp in an editor and inspect the source code to determine what the program is
doing.

3. Precisely what is the atoi() function used for in this program?

• Compile the program, with the debugging flag (-g) included, so that you have an executable called
ProgramOne.

• Start the debugger by issuing the command

gdb ProgramOne

You should see a few lines of information about gdb scrolling on your screen followed by a (gdb)
prompt. This lab will focus on command line interaction with gdb.

(Note that on the Linux boxes you are free to use DDD, a graphical interface for gdb. All gdb
commands will work in ddd; however, there are also menus, buttons, and windows in ddd that
perform many of the actions you can initiate with gdb text-based commands. If you’re sitting at
one of Linux terminals or you have been fortunate enough to get remote windowing to work, type
ddd& at the terminal prompt — don’t forget the ‘&’ — it allows you to continue typing commands
in your terminal window after ddd starts running. Then in ddd, just open the executable you
are interested in inspecting.

As you work, it will be helpful to keep your source code open in an editor so that you may view it
alongside the gdb output.

• To run the debugger on your executable, just type run or simply r (which is an alias for run) followed
by any necessary command line arguments. For example, because this program expects a single integer
command-line argument, you can use something like

r 3

You’ll see the output of your program displayed at the prompt. Type your responses into that window.

• Debuggers are useful because they allow you to stop execution of the program at any breakpoint you
set. Once at that breakpoint, you can examine the values of variables and walk through the code step
by step. To set a breakpoint, you can enter a command that follows the following format:

Due: Tues, Sept. 20, 5:00 pm 1



CMSC 240, Prof. Szajda, Fall 2022 Lab 3: GDB Due: Tues, Sept. 20, 5:00 pm

break source-code-filename:line-num-in-file

(you can use b as an alias for break). Specifically, you could set a break on line 27 of ProgramOne.cpp
by giving the command

b ProgramOne.cpp:27

Another way to set a breakpoint is to give the name of a particular function you want the break to
occur on, e.g.,

b Sum

Now, put a breakpoint at the line declaring the variable array in the main function. (If you get errors
from gdb stating there are no debugging symbols found at this point, you might want to scan down the
g++ man page for the information about the –g flag. It is buried pretty deep, so using ‘/’ to search for
it may be helpful.)

When you run the program again, you’ll notice the program will stop and the (gdb) prompt will
reappear. gdb will also specify which breakpoint was reached and will display the source code for the
specified location. (NOTE: The line that gdb displays has not yet been executed! The breakpoint is
set between the previous line and the line that is displayed.)

4. Copy and paste both lines of the breakpoint information printed by gdb for the array declaration.

You can then move on to the next line of code by typing n or next. The next command moves you to
the next line of the source code as the program is executing.

You should note that next does not allow you to step inside function calls. To step inside a function
call, enter the command s (or step) when you’re at the line of code that calls the function. Place a
breakpoint at the line in main where the function call to Sum occurs and use the c command (or cont
or continue) — this causes execution to resume as normal (not stepping) until the next breakpoint
is encountered. You should see gdb pauses just before executing the line of code containing the Sum

function call. Now use s to step into that function.

5. Copy and paste both lines of the breakpoint information printed by gdb immediately after stepping
into Sum.

• You can also display the current value of any variable within the current scope by using the print (or
p) command. For example, you can type

p array

at the (gdb) prompt to print the contents of the array variable.

To answer the following questions, you should restart debugging from the beginning of the program
by issuing the run command again in gdb. Note that the line of source code that gdb displays is the
one that will be executed next, not the one that has just been executed.

6. Copy & paste the gdb output when you issue the command p array immediately after the array
is declared.

7. Copy & paste the gdb output when you issue the command p *array at that same place.

8. Copy & paste the gdb output when you issue the command p array[0] at that same place.

9. Copy & paste the gdb output when you issue the command p &(array[0]) at that same line.

10. Select all correct responses with respect to the four values above.

If you want to continually display the value of a variable, you can use the display command (or more
simply disp). For example, enter

Due: Tues, Sept. 20, 5:00 pm 2



CMSC 240, Prof. Szajda, Fall 2022 Lab 3: GDB Due: Tues, Sept. 20, 5:00 pm

display array

after the line that declares array, and then repeatedly use the next command until you reach the end
of the program. You should notice that the value for array will be repeated after each next command.
To stop displaying a variable at any point, enter undisplay (or undisp) followed by the number (to
the left of each display of the variable) associated with that variable. Try this until you’re comfortable
with its functionality.

• Now place a new breakpoint on the line inside the for-loop’s body within the Sum function (line 17).
Rerun the program (use a small number, say 3, of numbers to enter) and step through to completion of
the program. Within that for-loop inside Sum, use display array[i] and display sum to indicate the
values for array[i] and sum as the loop progresses. (Note that displaying the variable named array

in main differs from displaying the parameter named array in Sum because the scopes are different.)

11. Copy and paste display information for array[i] and sum from any one iteration through the
loop.

• Type q (or quit) to exit gdb and return to the command prompt.

Lab Exercise #2:

• Open ProgramTwo.cpp in an editor and inspect the source code to determine what the program is
doing. Note that the program uses two different C-style strings: one an “automatic” which is allo-
cated and deallocated for you automatically; the other uses explicitly dynamic allocation, and must be
deleted before the scope ends. The program also uses the C-style string function strncpy to copy into
those strings — inspect the C++ API to understand what this function does.

Compile (with -g) and run the program at the terminal.

12. Copy & paste the output from the program.

13. Based on code inspection, what did you expect the last two cout statements to print?

• Now run the program in gdb, setting a breakpoint at main. After the allocation of the two char arrays
but before execution of the strncpy calls, use gdb’s display capability to show what is contained in the
two arrays.

14. Copy & paste the display output for the two arrays before the strncpy calls are executed.

Use n to step through your program line by line.

15. Copy & paste the display output for the two arrays before the first pair of cout statements are
executed.

16. Copy & paste the display output for the two arrays before the second pair of cout statements are
executed.

• Rerun the program in gdb, but just before execution of the second pair of cout statements, issue the
following commands in gdb:

set autoString[3] = ’\0’

set dynamicString[4] = ’\0’

The \0 character is used as the end-of-string character to indicate to C++ where the end of a C-style
string of characters occurs.

• Then continue to step through the program, executing the second pair of cout statements.

Due: Tues, Sept. 20, 5:00 pm 3



CMSC 240, Prof. Szajda, Fall 2022 Lab 3: GDB Due: Tues, Sept. 20, 5:00 pm

17. What is now printed for autoString?

18. What is now printed for dynamicString?

19. Based on the previous observations, the API description of strncpy, and your knowledge of C-style
strings, if our goal was to produce just "289" as the output of each of the second set of cout
statements, what is missing from the C-style strings as a result of using strncpy as given?

• Modify ProgramTwo.cpp to include two assignment statements of the end-of-string character to ensure
that C++ will print only "289" for both autoString and dynamicString in the second pair of cout
statements. Compile, execute, and test for correctness.

Lab Exercise #3:

• Open ProgramThree.cpp and INPUT.txt in an editor and inspect the source code and input file to
determine what the program is doing. Note that the program reads the same input file twice. The first
loop uses >> to read characters from the file, skipping any whitespace. The second loop uses the .get()
function to read one character at a time from the file, including any whitespace. When printing, both
loops print each character read, immediately followed by its ASCII integer value.

• Compile (with -g) the program and execute.

20. Copy and paste the output of the program.

21. Based on inspection of INPUT.txt, what behavior does the first loop exhibit that is incorrect or
unexpected?

• You will now use gdb to determine why the first loop is incorrect. Set a breakpoint for line 12 (the first
while statement) of the program. Then run the program in gdb, and when the program pauses at line
12, use the following display commands to allow gdb to display the state of your infile stream and
the contents of the variable c as you step through the program.

display c

display infile.good()

display infile.eof()

• Now step through the loop as the five non-whitespace characters are read from the file, until the loop
fails.

22. When do the values of infile.good() and infile.eof() change?

23. Why is the value 9 printed twice by this loop?

• Modify ProgramThree.cpp to include appropriate logic (using infile.eof()) to recognize when the
end-of-file character has been reached, so that the value 9 will not be printed twice. Compile, execute,
and test for correctness.

Lab Exercise #4:

• Open and carefully inspect the source files ClassOne.h, ClassOne.cpp, and ProgramFour.cpp so that
you understand their functionality and purpose.

24. What three types of data does a ClassOne object contain?

25. What functionality (methods) would a ClassOne-type object have?

Note that ProgramFour dynamically allocates two objects of type ClassOne (similar to what you saw
above for dynamic allocation of a C-style string), and deletes those objects at the end of their scope.

Due: Tues, Sept. 20, 5:00 pm 4



CMSC 240, Prof. Szajda, Fall 2022 Lab 3: GDB Due: Tues, Sept. 20, 5:00 pm

• There are two errors with these programs — one that causes unexpected behavior and one that causes
the program to crash. Compile and run the program at the terminal (remember to include both .cpp
files, but no .h files, in the compile command).

26. What is the unexpected result in the output (that occurs before the crash at the end)?

• Now execute gdb on this program and begin stepping through the program from the beginning.

27. Copy and paste the result when you have gdb print or display obj immediately after its construction.

28. Copy and paste the result when you have gdb print or display *obj.

29. Copy and paste the result when you have gdb print or display obj2 immediately after its construction.

30. Copy and paste the result when you have gdb print or display *obj2.

31. Copy and paste the result when you have gdb print or display obj->charstar data.

32. Copy and paste the result when you have gdb print or display obj2->charstar data.

33. Based on the information above, why do you get the unexpected result in the output? (You may
need to inspect the copy constructor in ClassOne.cpp again, too.)

• You need to make changes to the copy constructor to fix the unexpected result you saw above. (What
changes?) Fix the issue in that copy constructor, and then compile and run ProgramFour again. If you
appropriately fixed the problem above, the crash should also be eliminated.

34. Briefly describe your fix to the copy constructor.

35. Why did your fix above eliminate the crash as well?

Naming:

Same as usual. The name of your submission file for this lab MUST be cmsc240_lab3_netID.txt, where the
netID is, of course, your netID. Note this is a .txt file not a .tar file.

Submission:

The high level picture is that to submit any labs/project in this course, you send an email to a special email
address with your single submission file attached. This has the effect of placing your submission in the
appropriate Box folder. If your submission requires more than one file, you should tar or zip your files
together to create your single submission file.

The the email address for this lab is

lab3.f0zlfvd310xgh1sj@u.box.com.

Due: Tues, Sept. 20, 5:00 pm 5


