
std::chrono

CMSC 240
All examples borrowed/modified from
C++ Crash Course by Josh Lospinoso

No Starch Press

The stdlib Chrono Library

• Provides a variety of clocks in the
<chrono> header

• Useful for when you want to program
something that depends on time or for
timing your code

• Provides three clocks, all in the
std::chrono namespace, with each
providing a different guarantee

Aside: The stdlib Chrono
Library

• std::chrono::system_clock is the
system wide real-time clock
w A.K.A. the wall clock
w Provides elapsed time since an

implementation specific start date
§ Most use January 1, 1970 at midnight

Aside: The stdlib Chrono
Library

• std::chrono::steady_clock
guarantees that its value will never
decrease
w Might seem absurd, but measuring time is

complicated -- might have to deal with leap
seconds and/or inaccurate clocks

• Aside: I once had to deal with real-world
situation where triangle inequality
failed!
w So yes, this kind of stuff happens

Aside: The stdlib Chrono
Library

• std::chrono::high_resolution_clock
has the shortest tick period available
w tick is the smallest atomic change that the

clock can measure
§ I.e., the granularity of the clock

• Beware of situations where tick is, say,
millisecond, but clock is only updated
every half second!
w Mostly a historical issue now

Aside: The stdlib Chrono
Library

• Each clock supports the static member
function now(), which returns a time
point corresponding to the current
value of the clock

• time point represents a moment in
time

• chrono encodes time points using
std::chrono::time_point type

Aside: The stdlib Chrono
Library

• Using time_point objects is
relatively easy

• They provide a time_since_epoch()
method that returns the amount of
time lapsed between the time_point
and the clock’s epoch

• This elapsed time is called a duration

Aside: The stdlib Chrono
Library

• epoch is an implementation defined
reference point denoting the
beginning of the clock

• UNIX epoch (or POSIX time) begins on
January 1, 1970

• Windows epoch begins January 1,
1601
w Corresponding to beginning of a 400 year

Gregorian-calendar cycle

Aside: The stdlib Chrono
Library

• An alternate method to obtain a
duration from a time_point is to
subtract two of them

• A std::chrono:duration represents
the time between two time_point
objects

• Durations expose a count() method
that returns the number of clock ticks
in the duration

• Each of the auto variables are
time_point objects. And each of these
exposes the time_since_epoch()
method

Aside: The stdlib Chrono
Library

• time_since_epoch() returns a
duration, and the count() method of
that duration returns the number of
ticks

Aside: The stdlib Chrono
Library

Aside: The stdlib Chrono
Library

Any clock has a now()method

now() time_point

any time_point has a time_since_epoch() method

time_since_epoch() duration

Any duration has a count()method number of ticks

• duration objects can also be
constructed directly

• std::chrono namespace contains
helper functions for generating
durations

• std::chrono::chrono_literals
namespace offers User-defined literals
for creating durations

Aside: The stdlib Chrono
Library

Aside: The stdlib Chrono
Library

Note you don’t have to use those exact numerical values.
Also, for example, ms is similar to appending L to a long value

Aside: The stdlib Chrono
Library

• Chrono also supplies the function
template
std::chrono::duration_cast which
does pretty much what you’d expect:
converts a duration from one unit to
another (e.g., seconds to minutes)
w And it works, pretty much how you’d expect

Aside: The stdlib Chrono
Library

• std::chrono::duration_cast

Aside: The stdlib Chrono
Library

What you want to cast
What you want to cast to

• Waiting: You can use durations to
specify an amount of time for your
program to wait

• stdlib provides additional concurrency
primitives in the <threads> header
w Contains the non-member function
std::this_thread::sleep_for

w sleep_for accepts a duration argument
corresponding to how long you want your
thread to wait (or “sleep”)

Aside: The stdlib Chrono
Library

Aside: The stdlib Chrono
Library

So Let’s Use This

• Optimizing code requires accurate
measurement (to determine how long a
particular code path takes)

• Chrono is very useful for this
• The Stopwatch class defined in the

following (user defined, not in a standard
library) is an example of how you can
measure time in a code path

• The idea: a Stopwatch object keeps a
reference to a duration object

So Let’s Use This

• When the Stopwatch is constructed, the
time (via now()) is recorded

• When the Stopwatch is destructed, the time
since the start is recorded

• So, construct your Stopwatch, run your
task, destruct your Stopwatch

Stopwatch

• The result instance variable is a reference
to a duration (with nanosecond granularity)

• start is a time_point for a
high_resolution_clock

Stopwatch

• When the Stopwatch is constructed, result
parameter is assigned to the result
instance variable

• the time (via now()) is recorded

Stopwatch

• When the Stopwatch is destructed, result is
assigned a duration that records the
different between the current time and start
w Current time is obtained via now()

Using Stopwatch

What’s with the
apostrophes?

Using Stopwatch

What’s with the
parentheses? (Hint:
it’s not a method
body)

Using Stopwatch

What’s with the
volatile keyword?

volatile

• According to the standard: [..] volatile is a hint to
the implementation to avoid aggressive
optimization involving the object because the value
of the object might be changed by means
undetectable by an implementation.[...]

volatile

• In English: The compiler can see that the value of n
never changes, so it might try to optimize away the
for loop (thus avoiding the conditional check on each
iteration, which can involve fetching the value of the
variable i, comparing to n, etc).

volatile

• In English: volatile says ”Don’t do this. Though it
looks like the value of n never changes, it may
actually at times change through means of which you
may not be aware and/or cannot detect.”

volatile

• In this particular example, we’re trying to time the
iterations of the loop, so we don’t want the loop to be
optimized out of the executable code. Since result
is declared volatile, and appears in the loop, the
compiler will not optimize out the loop.

Thanks to StackOverflow:
https://stackoverflow.com/questions/4437527/why-do-we-use-volatile-keyword

https://stackoverflow.com/questions/4437527/why-do-we-use-volatile-keyword

