T 6

ARRAYS and
ARRAYLISTS

Slides by Donald W. Smith 1F6r/1§(I)/E2)Ba1f§
Copyright © 2013 by John Wiley & Sons. All rights reserved. TechNeTrain.com

SSlJi Chapter Goals

o

41 To collect elements using arrays and array
lists

1 To use the enhanced for loop for traversing
arrays and array lists

4 To learn common algorithms for processing
arrays and array lists

-1 To work with two-dimensional arrays

In this chapter, you will learn about
arrays, array lists, and common
algorithms for processing them.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 2

SsJi Contents

41 Arrays
2 The Enhanced for Loop
1 Common Array Algorithms

4 Problem Solving:
= Adapting Algorithms

= Discovering Algorithms by Manipulating Physical
Objects

41 Two-Dimensional Arrays
2 Array Lists

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 3

Qi 6.1 Arrays

4 A Computer Program often needs to

store a list of values and then process -;’i
them 67.5
. . . 29
2 For example, if you had this list of 3
values, how many variables would you |80
0 115
need” 1
« double inputl, input2, input3... 100
65

41 Arrays to the rescue!

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 4

Qi Declaring an Array

d Declarlng an array is a two step process
1) double[] values; // declare array variable

2) values

new double[10]; // initialize array

@ (2 e
values = values = J

You cannot use the array
until you tell the compiler
the size of the array in
step 2.

O O 00000 o0 0 0o

Declare the array variable Initialize it with an array

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 5

DeC|aring dl Array (Step 1)

2 Make a named ‘list’ with the following parts:

Type Square Braces Array name semicolon
double [] values ;

= You are declaring that
* There is an array named values

* The elements inside are of type double
* You have not (YET) declared how many elements are
In inside
1 Other Rules:

= Arrays can be declared anywhere you can declare a
variable

= Do not use ‘reserved’ words or already used names

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 6

| Declaring an Array (Step 2)

Q Reserve memory for all of the elements:

Array name Keyword Type Size semicolon
values = new double [10] 5

= YOu are reserving memory for:
 The array named values
needs storage for [10]
elements the size of type double

= You are also setting up the array variable
= Now the compiler knows how many elements there are
* You cannot change the size after you declare it!

values
N [0] [1] [2] [3] [4] ... [9]
double double double “ double “ double “ double

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 7

SSlli One Line Array Declaration

2 Declare and Create on the same line:

Type Braces Array name Keyword Type Size semi
double [] values = new double[10] ;

ou are declaring that
*\ There is an array named values
e elements inside are of type double
e reserving memory for the array
storage for [10]
elements\the size of type double
= You are alsp setting up the array variable

= | don't like this: makes it look like type is double.
= ['s NOT

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 8

L Couple of Notes (cont.)

First: an array is a type

an object type

Ex. int[] Is atype: an array of ints (or
simply an int array)

Ex. String[] Is a type: an array of
Strings (or simply a String array)
Since an array is an object type, what gets
stored in a variable of any of the array types

IS an object reference (even if the base type
of the array is a primitive type!)

Important

To be perfectly clear, some terminology

The base type of an array is the type that
each individual array element has

E.g., int[] pixel;

pixel is of type int array, but the base type
of pixel is int (because all elements of the
array are ints)

If the base type of your array is an object
type, then you must initialize (allocate
memory for) each element of the array
before using that element!

Couple of Notes

Second, note the AMAZING abillity an array
gives you: you can declare a huge number
of variables with a single line of code!

int[] myArray = new 1nt[10000007];

If you think you won’t need that many
variables in a program, see Labs 6,7,8,
and final project!

-

Pi Declaring and Initializing an Array

e RS
d

You can declare and set the initial contents of all
elements by:
Type Braces Array name contents list semi

int [] primes = { 2, 3, 5, 7} ;
2 You are declaring that
= There is an array named primes

= The elements inside are of type int

= Reserve space for four elements
* The compiler counts them for you!
= Set initial values to 2, 3, 5, and 7
= Note the curly braces around the contents list

= Truth be told, this is rarely used

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 9

i Accessing Array Elements

2 Each element is numbered Elements in the array values are
accessed by an integer index i,
using the notation values[i].

= We call this the index

= Access an element by

 Name of the array

* Index number
values[i]

©
values = ———///..

public static void main(String[] args)

{

double values[];
values = new double[10];
values[4] = 35;

}

Copyright © 2013 by John Wiley & Sons. All rights reserved.

Access an array ClCant

double[]
[0] 0
[1] 0
[2] 0
[3] 0
[4] 35
[5] 0
[6] 0
[7] 0
[8] 0
[9] 0
Page 10

Syntax 6.1: Array

2 To declare an array, specify the:
= Array variable name
= Element Type
= Length (number of elements)

[-
= TN

Element
Nawe of array variable type Length
\ /)

Type of array variable “double[] values = new double[10];

double[] moreValues = { 32, 54, 67.5, 29, 35 };

'

Use brackets to access an element.
A\ List of initial values
values[1] = 0;

A\ The index wmust be = 0 and < the length of the array.
/-T\ See page 255.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 11

=G 0 N
Tl k.;‘,

SSll)i Array Index Numbers

2 Array index numbers start at 0
= The rest are positive integers
2 An array with 10 element has indexes 0 - 9

= There is NO element 10! . double[]
The first element is at index 0 [O] 0
[1] 0
public static void main(String[] args) [2] 0
{ Bl o
double values[]; [4] 35
values = new double[10]; [5] 0
} [6] o©
[7] 0
[8] 0
The last element is at index 9 [9] 0

Copyright © 2013 by John Wiley & Sons. All rights reserved.

Page 12

L ’ pi Array Bounds Checking

2 An array knows how many elements it can hold
= values.length is the size of the array named values

= Itis an integer value (index of the last element + 1)
1 Use this to range check and prevent bounds errors

public static void main(String[] args)
{
int 1 = 10, value = 34;
double values]|];
values = new double[10];
if (0 <= i & 1 < values.length) // length is 10

{
value[i] = value; Strings and arrays use different
} syntax to find their length:
} Strings: name.length()

Arrays: values.length

Copyright © 2013 by John Wiley & Sons. All rights reserved.

Table 1

int[] numbers = new int[10];

final int LENGTH = 10;
int[] numbers = new int[LENGTH];

int length = in.nextInt();
double[] data = new double[length];

int[] squares = { 0, 1, 4, 9, 16 };

P Summary: Declaring Arrays

Declaring Arrays

An array of ten integers. All elements
are initialized with zero.

It is a good idea to use a named constant
instead of a “magic number”.

The length need not be a constant.

An array of five integers, with initial
values.

String[] friends = { “Emily”, “Bob”, “Cindy” }; An array of three strings.

® double[] data = new int[10]

Copyright © 2013 by John Wiley & Sons. All rights reserved.

Error: You cannot initialize a double[]
variable with an array of type int[].

Page 14

Wi Array References

a Make sure you see the difference between the:
= Array variable: The named ‘handle’ to the array
= Array contents: Memory where the values are stored

int[] scores = { 10, 9, 7, 4, 5 };

Array variable Array contents
scores = —————\\\’>
int
Reference L]

10

9

An array variable contains a reference to the 7
array contents. The reference is the location 4
of the array contents (in memory). 5

Values
Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 15

Ji Array Aliases

a You can make one array reference refer to the
same contents of another array reference:

{16, 9, 7, 4, 5 };
scores; // Copying the array reference

int[] scores
Int[] values

Array contents
scores = ﬂ,
int[]

values

10
References

|0

An array variable specifies the location of
an array. Copying the reference yields a
second reference to the same array.

N

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 16

Sl Partially-Filled Arrays

>

2 An array cannot change size at run time
= The programmer may need to guess at the maximum
number of elements required
= |Itis a good idea to use a constant for the size chosen
= Use a variable to track how many elements are filled

final int LENGTH = 100;

double[] values = new double[LENGTH];
int currentSize 0;

Scanner in = new Scanner(System.in);
while (in.hasNextDouble())

Maintain the number of elements

{) : :
if (currentSize < values.length) filled using .a Va_”ab!e
{ (currentSize in this example)
values[currentSize] = in.nextDouble();
currentSize++;
}
}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 17

¥ Walking a Partially Filled Array

Use cUrrentSize, not values.length for the last element

for (int 1 = @; i < currentSize; i++)

{
System.out.println(values[i]);

}

A for loop is a natural choice
values = ——__| double[] to walk through an array
= R
32
e > currentSize
67.5
29)
(" >values.length
<
Not currently used

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 18

= Accessing a nonexistent element is very common error

= Array indexing starts at O ~ double[]
= Your program will stop at run time 01 o
1
public class OutOfBounds Ez% g
{ [3] 0
public static void main(String[] args) [4] 35
{ [5] 0
double values|[]; E?ﬂ 8
values = new double[10]; [81] o
values[10] = 100; [9] 0
} The is no element 10

¥

java.lang.ArrayIndexOutOfBoundsException: 10
at OutOfBounds.main(OutOfBounds.java:7)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 19

2 Uninitialized Arrays
= Don’t forget to initialize the array variable!
= The compiler will catch this error an

double[] values; values =

values[@] = 29.95; // Error—values not initialized

Error: D:\Javal\Unitialized.java:7:
variable values might not have been initialized

t’ double[]
double[] values; values = ___,//>

values = new double[10]; 0
values[@] = 29.95; // No error

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 20

=G 0 N
Tl k.;‘,

S5

S 6.2 The Enhanced for Loop

2 Using for loops to ‘walk’ arrays is very common
= The enhanced for loop simplifies the process
= Also called the “for each” loop

= Read this code as:

 “For each element 1n the array”

2 As the loop proceeds, it will:

= Access each element in order (0 to length-1)
= Copy it to the element variable

= Execute loop body

2 Not possible to:
= Change elements
= Get bounds error

Copyright © 2013 by John Wiley & Sons. All rights reserved.

double[] values = . .
double total = 9;
for (double element : values)

{

total = total + element;

¥

.

Page 21

T —
i i % <
:}“ i

P Syntax 6.2: The Enhanced for loop

e

2 Use the enhanced “for” loop when:

= You need to access every element in the array
= You do not need to change any elements of the array

This variable is set in each loop iteration.
It is only defined inside the loop. An array

/

for (double element : values)

r |

These statements % sum = sum + element; Tf'e variable
are executed for each .} containg an.elemem,
element not an index.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 22

/|

| -

&) 6.3 Common Array Algorithms

Filling an Array

Sum and Average Values

Find the Maximum or Minimum
Output Elements with Separators
_inear Search

Removing an Element

nserting an Element

Swapping Elements

Copying Arrays

Reading Input

U U U o o o o o o o B/

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 23

J Q)i Common Algorithms 1 and 2:

'\ L=

1) F|II|ng an Array
= Initialize an array to a set of calculated values
= Example: Fill an array with squares of 0 through 10

int[] values = new int[11];
for (int 1 = @; i < values.length; i++)
{
values[i] = 1 * i;
2) Sum and Average !

= Use enhanced for loop, and make sure not to divide by zero

double total = @, average = 0;
for (double element : values)

{
total = total + element;

¥
if (values.length > @) { average = total / values.length; }

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 24

1 Common Algorithms 3:

—_~ - |

N

double largest = values[@];
for (int 1 = 1; i < values.length; i++)

{ . . :
if (values[i] > largest) Typical for loop to find maximum
{ : .
largest = values[i]; 2 Maximum and Minimum
} .
} = Set largest to first element
= Use for or enhanced for loop
= Use the same logic for minimum
double largest = values[@]; double smallest = values[0];
for (double element : values) for (double element : values)
{ {
if element > largest) if element < smallest)
largest = element; smallest = element;
} }
Enhanced for to find maximum Enhanced for to find minimum

Copyright © 2013 by John Wiley & Sons. All rights reserved.

:

Ssllli Common Algorithms 4

o Element Separators
= Qutput all elements with separators between them
= No separator before the first or after the last element

for (int 1 = @; i < values.length; i++)
tr 32 | 54 | 67.5 | 29 | 35
if (i > 9)
{
System.out.print(" | "); L

}

System.out.print(values[i]);

}

import java.util.*; [32, >4, 67.5, 29, 33]

System.out.println(Arrays.toString(values));

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 26

Jd

i Common Algorithms 5:

" L |

Linear Search
= Search for a specific value in an array
= Start from the beginning (left), stop if/when it is found
= Uses a boolean found flag to stop loop if found

int searchedValue = 100; 1int pos = 0;
boolean found = false;

while (pos < values.length && !found) COmpound condition to

{ prevent bounds error if

if (values[pos] == searchedValue) value not found.

{

found = true;
glse if (found)
{

¢ DOS++; ; System.out.println(“Found at position: »” + pos);

J else { System.out.println(“Not found”);

¥

Copyright © 2013 by John Wiley & Sons. All rights reserved.

B Common Algorithms 6a:

Removmg an element (at a given position)
= Requires tracking the ‘current size’ (# of valid elements)
= But don’t leave a ‘hole’ in the array!

= Solution depends on if you have to maintain ‘order’
* If not, find the last valid element, copy over position, update size

[0]
[1] |
[2] values[pos] = values[currentSize - 1];
: currentSize--;
~ [pos]

o [currentSize - 1]

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 28

B Common Algorithms 6b:

Removmg an element and maintaining order
= Requires tracking the ‘current size’ (# of valid elements)
= But don’t leave a ‘hole’ in the array!

= Solution depends on if you have to maintain ‘order’
* If so, move all of the valid elements after ‘pos’ up one spot,

update size
[O]
[1]
[2]
: for (int i = pos; i < currentSize - 1; i++)
..........) - [pOS] {
o:’j ------------- > values[i] = values[i + 1];
0 _______________ > }
o - currentSize--;
8

[currentSize - 1]

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 29

i Common Algorithms 7:

e 3

2 Inserting an Element

= Solution depends on if you have to maintain ‘order’
* If not, just add it to the end and update the size

* If so, find the right spot for the new element, move all of the
valid elements after ‘pos’ down one spot, insert the new

element, and update size

[0] if (currentSize < values.length)

(11 {
[2] currentSize++;
: for (int i = currentSize - 1; i > pos; i--)
........... [p 0S] {
s;*tmr,, values[i] = values[i - 1]; // move down
o, }
______ -
G,i _________ > values[pos] = newElement; // fill hole
g G }
e [currentSize - 1]

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 30

& Common Algorithms 8:

220 [—
54 g e
67.5
29 (31 temp = 54
34.5 _ 32
29 [i1
67.5 ;
29 (i1 temp = 54
34.5
| 32
double temp = values[i]; 29 [i]
values[i] = values[j]; 67.5
Values[j] = temp; 54 U]‘

Copyright © 2013 by John Wiley & Sons. All rights reserved.

Page 31

&)k Common Algorithms 9a:

N values =
. > double[]
4 COpylng ArrayS prices = J —

S 5 LB

. 32|

= Not the same as copying only the reference £
» Copying creates two set of contents! 29

35

47.5

= Use the new (Java 6) Arrays.copyOf method

double[] values = new double[6];

. // Fill array
double[] prices = values; // Only a reference so far
double[] prices = Arrays.copyOf(values, values.length);
// copyOf creates the new copy, returns a reference

values = ——_,_ double[] prices = — ., double[]
32 32
54 54
67.5 67.5
29 29

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 32

SSlli Common Algorithms 9b:
RO

Ny

\, -~

2 Growing an array

= Copy the contents of one array to a larger one
= Change the reference of the original to the larger one

2 Example: Double the size of an existing array
= Use the Arrays. copyOf method

= Use 2 *'in the second parameter

double[] values = new double[6];
. // Fill array

double[] newValues = Arrays.copyOf(values, 2 * values.length);
values = newValues;

Arrays.copyOf second parameter is
the length of the new array

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 33

" Increasing the Size of an Array

= Copy all elements of values to newValues

o Move clements to a larger array 0 Store the reference to the larger array in values

newValues = m

2 Then copy newValues
reference over values
reference

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 34

ey ."-. WP o ettt e
"-:::u:.'lnmnfﬁnﬂhn::u::‘.- st

i Common Algorithms 10:

:; Readlng Input

= A: Known number of values to expect
« Make an array that size and fill it one-by-one

double[] inputs = new double[NUMBER _OF INPUTS];
for (1 = @; 1 < values.length; i++)
{

inputs[i] = in.nextDouble();

}

= B: Unknown number of values
* Make maximum sized array, maintain as partially filled array

double[] inputs = new double[MAX INPUTS];
int currentSize = 0;

while (in.hasNextDouble() && currentSize < inputs.length)
{

inputs[currentSize] = in.nextDouble();
currentSize++;

}

Copyright © 2013 by John Wiley & Sons. All rights reserved.

LargestinArray.java (1)

= s
1 import java.util.Scanner;
2
3 /**
4 This program reads a sequence of values and prints them, marking the largest value.
5 */
6 public class LargestInArray
7 {
8 public static void main(String[] args)
9 {
10 final int LENGTH = 100;
11 double[] data = new double[LENGTH];
12 int currentSize = 0;
13
14 // Read inputs
15
16 System.out.printin("Please enter values, Q to quit:");
17 Scanner in = new Scanner(System.in);
18 while (in.hasNextDouble() && currentSize < data.length)
19 {
20 data[currentSize] = in.nextDouble();
21 currentSize++; .
22 } Input values and store in next

- available index of the array

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 36

46
47 }

}

Ji LargestinArray.java (2)

// Find the largest value

double Tlargest = data[0];
for (int 1 = 1; 1 < currentSize; 1++)

{ for | nd th
if (data[i] > largest) ‘USG a oop? d e
{ Find the largest’ algorithm
largest = data[i];
}
} Program Run
// Print all values, marking the largest Please enter values, Q to quit:
35 80 115 44.5 Q
for (int i = 0; 1 < currentSize; i++) 35
{ 80
System.out.print(data[i]); 115 <== largest value
if (data[i] == largest) 44 .5
{
System.out.print(" <== largest value");
}
System.out.printin();

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 37

———
2 Underestimating the Size of the Data Set
= The programmer cannot know how someone might want to use a program!

= Make sure that you write code that will politely reject excess input if you
used fixed size limits

Sorry, the number of lines of text is higher
than expected, and some could not be
processed. Please break your input into
smaller size segments (1000 lines maximum)
and run the program again.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 38

Special Topic: Sorting Arrays

2 When you store values into an array, you can
choose to either:

[OJ[1][2][31[4]
= Keep them unsorted (random order)

11 9 17 5 12

= Sort them (Ascending or Descending...) [0J[11[2]1[3][4]
5 9 11 12 17

1 A sorted array makes it much easier to find a
specific value in a large data set

2 The Java APl provides an efficient sort method:

Arrays.sort(values); // Sort all of the array
Arrays.sort(values, O, currentSize); // partially filled

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 39

It
: —

SSll)i Special Topic: Searching

s S

2 We have seen the Linear Search (6.3.5)
= [t works on an array that is sorted, or unsorted
= Visits each element (start to end), and stop if you find a
match or find the end of the array
2 Binary Search
= Only works for a sorted array

= Compare the middle element to our target
* If it is lower, exclude the lower half
« If it is higher, exclude the higher half

= Do it again until you find the target or you cannot split
what is left

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 40

SSl)i Binary Search

NS

41 Binary Search [0][11[2](3]1[41[5][617]

1 5 8 9 12 17 20 32
= Only works for a sorted array

= Compare the middle element to our target
* If it is lower, exclude the lower half
« |f it is higher, exclude the higher half
Do it again until you find the target or you cannot split
what is left

= Example: Find the value 15

[4][5][6][7]
12 17 20 32 (4705]

12 17 [5]

17
Sorry, 15 is not in this array.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 41

@ Binary Search Example

boolean found = false, int low = @, int pos = 0;
int high = values.length - 1;

while (low <= high && !found)

{
pos = (low + high) / 2; // Midpoint of the subsequence
if (values[pos] == searchedValue)
{ found = true; } // Found it!
else if (values[pos] < searchedValue)
{ low = pos + 1; } // Look in first half
else { high = pos - 1; } // Look in second half
}
if (found)
{ System.out.println("Found at position " + pos); }
else

{ System.out.println("Not found. Insert before position " + pos); }

[4]1[5][6][7] [4][5] [5]
12 17 20 32 12 17 17

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 42

SLli 6.4 Using Arrays with Methods

Q Methods can be declared to receive references as
parameter variables

2 What if we wanted to write a method to sum all of
the elementS |n an arl’ay7 prices = — double[]
= Pass the array reference as an argument!

32
54
priceTotal = sum(prices); 675
29
35
47.5

reference

public static double sum(double[] values)
{
double total =

for (double element : values)

total = total + element; Arrays can be used as
return total; method arguments and

} method return values.

Copyright © 2013 by John Wiley & Sons. All rights reserved.

i Passing References

a Passmg a reference give the called method access
to all of the data elements
= It CAN change the values!
2 Example: Multiply each element in the passed
array by the value passed in the second parameter

.“ o

e The parameter variables values and factor are created.)
multiply(values, 10);

reference value

public static void multiply(double[] data, double factor)

{
for (int 1 = @; i < data.length; i++)
data[i] = data[i] * factor;

¥

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 44

scores =

values

factor

Method call

o scores

values

factor =

Initializing method parameter variables

* The parameter variables are initialized with the arguments that are passed in the
call. In our case, values is set to scores and factor is set to 10. Note that values and
scores are references to the same array. @

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 45

e The method multiplies all array elements by 10. e

* The method returns. Its parameter variables are removed. However, values still
refers to the array with the modified values.)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 46

A | e
L ,M% =

i Method Returning an Array

S

1 Methods can be declared to return an array

public static int[] squares(int n)

41 To Call: Create a compatible array reference:

int[] numbers = squares(10);

« Call the method value
public static int[] squares(int n)
{

int[] result = new int[n];
for (int 1 = 0; i < n; i++)
{

result[i] = 1 * i,
}

reference return result;

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 47

—

Using Arrays with Methods

1) Decompose the task into steps kead inputs.
Rewove the wminimum,

Calevlate the sum.

_ _ Read inputs.
2) Determine the algorithms to use Find the winimum.
Find its position.
Rewove the minimuwm.

3) Use methods to structure the progroa cuiate the s

double[] scores = readInputs(); ® readInputs

double total = sum(scores) - minimum(scores); e sum

System.out.println("Final score: " + total); . ..
minimum

4) Assemble and Test the program

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 52

Assembling and Testing

2 Place methods into a class

1 Review your code

= Handle exceptional situations?
- Empty array? * No match?
: Py y * Multiple matches?
 Single element array?

Test Case Expected Output Comment
878.59.57510 50 See Step 1.
8779 24 Only one instance of the low score should be removed.
8 0 After removing the low score, no score remains.
(no inputs) Error That is not a legal input.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 53

Bl 6.7 Two-Dimensional Arrays

2 Arrays can be used to store data in two
dimensions (2D) like a spreadsheet

= Rows and Columns

= Also known as a ‘matrix’

Cold Silver Bronze
Canada 1 0 1
China 1 1 C
Germany C 0 1
Korea 1 0 0
Japan C 1 1
Russia 0 1 1
United States 1 1 v

Figure 12 Figure Skating Medal Counts

Copyright © ¢by John Wiley & Sons. All rights reserved. Page 59

Sl Declaring Two-Dimensional Arrays

2 Use two ‘pairs’ of square braces Gold Silver Bronze

1 0 1
const int COUNTRIES = 7; | , 9
const int MEDALS = 3; 0 0 1
int[][] counts = new int[COUNTRIES]|[MEDALS]; 1 0 0
0 1 1
0 I I
1 1 0

2 You can also initialize the array

const int COUNTRIES = 7;
const int MEDALS = 3;
int[][] counts =

{
}, Note the use of two ‘levels’ of curly

}, braces. Each row has braces with
}s commas separating them.

}s
}s
}s
}

J J

o
o

o
o

o
o

o
o

P P e Y e T)
R OORORBR
\o
R RPRROORO®
o
ORROROR

o
o

}s

Copyright © 2013 John Wiley & Sons. All rights reserved. Page 60

'\ pi Syntax 6.3: 2D Array Declaration

Number of rows
Nawe Element type / Numberof columns
\ \ /

double[][] tableEntries = new double[7][3];
All values are initialized with 0.

Name

\

int[1[] data = { List of initial valves

1
5, 10, 11, 8 },
9, 6, 7, 12 1},
4, 15, 14, 1 1},
¥
2 The name of the array continues to be a reference to the

contents of the array
= Use new or fully initialize the array

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 61

. Use two Index values:

i Accessing Elements

Column index

Row then Column
int value = counts[3][1]; /_EQ%
2 To print L] a2
= Use nested for loops e E&
« Outer row(i), inner column(3): = | (s
for (int i = @; i < COUNTRIES; i++) L6]

{

// Process the ith row

for (int j = @; j < MEDALS; j++)

{
// Process the jth column in the ith row
System.out.printf("%8d", counts[i][]]);

}

—
[OJ[1]1[2]

/

counts[3][1]

System.out.println(); // Start a new line at the end of the row

}

Copyright © 2013 by John Wiley & Sons. All rights reserved.

Page 62

LOCating Neigthring Elements

2 Some programs that work with two-dimensional
arrays need to locate the elements that are
adjacent to an element

2 This task is particularly common in games
2 Youareatloc i, j

[i - 1103 -1 [-1103] [G -1][] +1]

2 Watch out for edges!
= No negative indexes!
= Not off the ‘board’ [i105 - 1] [1103] [1105 + 1]

[i + 1105 - 1] [+ 11030 [G +1][] + 1]

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 63

Ss&l)i Adding Rows and Columns

4 Rows (x) Columns (y)

column J
int total = 0; |
for (int j = ©; j < MEDALS; j++) (01[3] —0
t 1 [11[3]
total = total + counts[i][]];
} [21[3]
[31[3]
0 MEDALS - 1 ,
1 1 [41[3]
[51[3]
[(61[3] -—— COUNTRIES - 1

int total = ©;

_ _ _ _ for (int 1 = @; 1 < COUNTRIES; i++)
row i— [1]1[0] [i1[1] [i][2] {

total = total + counts[i][j];
}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 64

W i Medals.java (1)

l /'k'k

2 This program prints a table of medal winner counts with row totals.
3 */

4 public class Medals

5 {

6 public static void main(String[] args)

7 {

8 final int COUNTRIES = 7;

9 final int MEDALS = 3;

10

11 String[] countries = 22 int[]1[] counts =
12 { 23 {

13 "Canada", 24 {1, 0, 11},
14 "China", 25 {1, 1, 01},
15 "Germany", 26 {0,0, 11},
16 "Korea", 27 {1, 0, 01},
17 "Japan”, 28 {0, 1, 11},
18 "Russia”, 29 {0, 1, 11},
19 "United States™ 30 {1, 1, 0}
20 }

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 65

i Medals.java (2)

33 System.out.printin(” Country Gold Silver Bronze Total");
34

35 // Print countries, counts, and row totals

36 for (int 1 = 0; 1 < COUNTRIES; 1++)

37 {

38 // Process the ith row

39 System.out.printf("%15s", countries[i]);

40

41 int total = 0;

42

43 // Print each row element and update the row total

44 for (int j = 0; J < MEDALS; j++)

45 {

46 System.out.printf("%8d", counts[i][j]);

47 total = total + counts[i][j];

48 } Program Run

49 Country Gold Silver Bronze Total
50 // Display the row total and printar cg:?:: i (1’ (1) §
51 System.out.printf("%8d\n", total); Germany 0 0 1 1
52 } Korea 1 0 0 1
53 } Japén 0 1 1 2
54 } United 2:::;: g i ; g

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 66

Sl 6.8 Array Lists

Zo, o

1 When you write a program that collects

values, you don’t always know how many
values you will have.

4 |In such a situation, a Java Array List offers
two significant advantages:

= Array Lists can grow and shrink as needed.

= The ArrayList class supplies methods for

common tasks, such as inserting and removing

elements. |
An Array List expands to hold as

many elements as needed

Copyright © 2013 by John Wiley & Sons. All rights reserved.

Tt
[T -

Wu Declaring and Using Array Lists

1 The ArraylList class is part of the
java.util package

= It is a generic class
» Designed to hold many types of objects

= Provide the type of element during declaration
« Inside < > as the ‘type parameter’:

* The type must be a Class
« Cannot be used for primitive types (int, double...)

ArraylList<String> names = new ArraylList<String>();

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 68

Syntax 6.4. Array Lists

Variable fype\ Variable nawme /An array list object of size 0

ArrayList<String> friends = new ArraylList<String>();

The add wmethod
appends an element to the array list,
increasing ifs size.

friends.add("Cindy");
String name = friends.get(i);
friends.set(i, "Harry");

Use the
get and set wethods
10 access an element.
The index must be
> 0and < friends.size().

2 ArraylList provides many useful methods:

=« add: add an element = set: change an element
= size: current length

= get: return an element

= remove: delete an element

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 69

—

Adding an element with add ()

e After add
names = — Arraylist<String> Size increased
o Before add "Emily"
"Bob" 3
names = ——~__ [ArrayList<String> "Cindy" New element

-) added at end
"Emily” 5
"Bob"

2 The add method has two versions:

= Pass a new element to add to the end
names.add(“Cindy”);

= Pass a location (index) and the new value to add
names.add(1, “Cindy”); Moves all other elements

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 70

"Emily”
"Bob"
"Carolyn"

nones:2dd(, AN GESUSESERE Now denen

added at index 1

"Emily”
n Ann "
"Bob"

Moved from index 1 to 2

"Carolyn"

Moved from index 2 to 3

= Pass a location (index) and the new value to add
Moves all other elements

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 71

i Removing an Element

names.remove(1l);

Moved from index 2 to 1

Moved from index 3 to 2

= Pass a location (index) to be removed
Moves all other elements

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 72

il
T

‘ Usmg Loops with Array Lists

4 You can use the enhanced for loop with
Array LiStS: ArraylList<String> names = . .

for (String name : names)

{
System.out.println(name);

}
4 Or ordinary loops:

<

ArrayList<String> names = . . k
for (int i = @; i < names. 51ze(), i++)

{
String name = names.get(i);
System.out.println(name);

¥

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 73

Bl \Working with Array Lists

Table 2 Working with Array Lists

ArraylList<String> names = new ArrayList<String>();

names.add("Ann");
names.add("Cindy");

System.out.println(names);

names.add(1l, "Bob");

names.remove(0);

names.set(0, "Bill");

String name = names.get(i);

String last

names.get(names.size() - 1);

Copyright © 2013 by John Wiley & Sons. All rights reserved.

Constructs an empty array list that can

hold strings.

Adds elements to the end.

Prints [Ann, Cindy].

Inserts an element at index 1. names i1s now
[Ann, Bob, Cindy].

Removes the element at index O. names is
now [Bob, Cindy].

Replaces an element with a different
value. names is now [Bil11, Cindy].

Gets an element.

Gets the last element.

Page 74

. s Copying an ArraylList

1 Remember that ArrayList variables hold a reference to an ArraylList
(just like arrays)

1 Copying a reference:

names = ﬁ»
ArrayList<String>
friends = J :
"Emily"
- T(Ar‘r‘ayList<Str‘ing> friends = names; ..(Efj’m”
. " n =CaRiold)
Ccfriends.add("Harry"); Tammo
reference

ArraylList<String> newNames = new ArraylList<String>(names);

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 75

_— .). -
i (| vl“?‘m n
&L Tl
f
‘,v‘“ li)
. | *‘1\‘ y

“ Array Lists and Methods

2 Like arrays, Array Lists can be method parameter
variables and return values.

2 Here is an example: a method that receives a list of
Strings and returns the reversed list.

reference

public static ArraylList<String> reverse(ArraylList<String> names)

{
// Allocate a list to hold the method result

ArraylList<String> result = new ArraylList<String>();
// Traverse the names list in reverse order (last to first)
for (int i = names.size() - 1; i >= 0; i--)
{
// Add each name to the result
result.add(names.get(i));

}

return result;

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 76

Wrappers and Auto-boxing

a Java prowdes wrapper classes for primitive types
= Conversions are automatic using auto-boxing
* Primitive to wrapper Class

Primitive Type Wrapper Class
double x = 29.95;

Double wrapper; byte Byte
wrapper = x; // boxing

boolean Boolean
SR = ~— Double char Character
value = @ 29.95 double Double
float Float
double x; int Integer
Double wrapper = 29.95;
X = wrapper; // unboxing Tong Long
short Short

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 77

Sl Wrappers and Auto-boxing

2 You cannot use primitive types in an ArraylList, but you can

use their wrapper classes
= Depend on auto-boxing for conversion

a2 Declare the ArraylList with wrapper classes for primitive types

= Use ArrayList<Double>

« Add primitive double variables
* Or double values

double x = 19.95;

ArraylList<Double> values = new ArraylList<Double>();
values.add(29.95); // boxing
values.add(x); // boxing

double x = values.get(9); // unboxing

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 78

ArraylList Algorithms

2 Converting from Array to ArrayList requires changing:
= index usage: [1i]
= values.length

double largest = values[@];
for (int i = 1; i < values.length; i++)

2 To {
= methods: get () . -
_\mhm&sieo ?f (values[i] > largest)
largest = values[i];
}
}

double largest = values.get(9);
for (int 1 = 1; i < values.size(); i++)

{
if (values.get(i) > largest)
{
largest = values.get(i);
}
}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 79

Arrays or Array Lists

4 Use an Array if:

= The size of the array never changes

= You have a long list of primitive values
 For efficiency reasons

= Your instructor wants you to
41 Use an Array List:
= For just about all other cases

= Especially if you have an unknown number of
iInput values

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 80

Operation
Get an element.
Replace an element.

Number of elements.

Number of filled elements.

Remove an element.

Add an element, growing
the collection.

Initializing a collection.

Copyright © 2013 by John Wiley & Sons. All rights reserved.

Arrays
values[4];
values[4] = 35;
values. length

currentSize
(companion variable, see
Section 6.1.3)

See Section 6.3.6

See Section 6.3.7

int[] values = { 1, 4, 9 };

Array and Array List Operations

Table 3 Comparing Array and Array List Operations

Array Lists
X = values.get(4)
values.set(4, 35);
values.size()

values.size()

values.remove(4);

values.add(35);

No initializer list syntax;
call add three times.

Page 81

B Common Error 6.4

2 Length versus Size

= Unfortunately, the Java syntax for determining the number of elements in an array, an
ArraylList, and a String is not consistent.

= It is a common error to confuse these. You just have to remember the correct syntax for each
data type.

Data Type Number of Elements

Array a.length
Array list a.sizeQ)
String a.length()

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 82

»7 Summary: Arrays

d An array collects a sequence of values of the same

type.
2 Individual elements in an array values are
accessed by an integer index i, using the notation

values[i].

2 An array element can be used like any variable.

2 An array index must be at least zero and less than
the size of the array.

2 A bounds error, which occurs if you supply an
iInvalid array index, can cause your program to
terminate.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 83

Ssl)i Summary: Arrays

2 Use the expression array.length to find the
number of elements in an array.

2 An array reference specifies the location of an
array.

2 Copying the reference yields a second reference to
the same array.

2 With a partially-filled array, keep a companion
variable for the current size.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 84

A | e
L ,M% =

Ssli Summary: Arrays

S

2 You can use the enhanced for loop to visit all
elements of an array.

= Use the enhanced for loop if you do not need the index
values in the loop body.

2 Alinear search inspects elements in sequence until a
match is found.

2 Use a temporary variable when swapping elements.

2 Use the Arrays. copyOf method to copy the
elements of an array into a new array.

2 Arrays can occur as method parameter variables and
return values.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 85

- i v
i [l o n
ol H‘ M'i —
S L | ‘\:l“)

Summary: Arrays

2 By combining fundamental algorithms, you can solve
complex programming tasks.

2 You should be familiar with the implementation of
fundamental algorithms so that you can adapt them.

J Discover algorithms by manipulating physical
objects
2 Use a two-dimensional array to store tabular data.

2 Individual elements in a two-dimensional array are
accessed by using two index values, values[1][]]

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 86

& Summary: Array Lists

NS

2 An Array List stores a sequence of values whose
number can change.

= The ArrayList class is a generic class: ArrayList<Type>
collects elements of the specified type.

= Use the size method to obtain the current size of an array list.

= Use the get and set methods to access an array list element
at a given index.

= Use the add and remove methods to add and remove array list
elements.

2 To collect numbers in Array Lists, you must use wrapper
classes.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 87

