Portfolio Evaluation: Consider two stocks, \(a \) and \(b \), and let \(S_a(t) \) and \(S_b(t) \) be the prices of the two stocks at time \(t \). At time \(t = 0 \), you buy \(n_a \) shares of stock \(A \) and \(n_b \) shares of stock \(B \). Then your initial wealth is

\[
W_0 = n_a S_a(0) + n_b S_b(0).
\]

Suppose your investment horizon is \(T \in \mathbb{R} \) years, after which your terminal wealth \(W_T \) is given by

\[
W_T = n_a S_a(T) + n_b S_b(T).
\]

(This presumes you do not trade any of your stock in the time interval \([0, T]\).)

Assume that \(S_a \sim \text{GBM}(\mu_a, \sigma_a) \) and \(S_b \sim \text{GBM}(\mu_b, \sigma_b) \), where \(\text{GBM}(\mu, \sigma) \) corresponds to a Geometric Brownian Motion distribution given by the following equation:

\[
S_k(T) = S_k(0) \exp((\mu_k - \frac{\sigma_k^2}{2})T + \sigma_k B_k(T))
\]

and where \(B_k(T) \) is given by a Standard Brownian Motion distribution, i.e., a \(\text{Normal}(0, \sqrt{T}) \) distribution. Assume that \(B_a(T) \) and \(B_b(T) \) are independent.

You would like to estimate

\[
\Pr\left(\frac{W_T}{W_0} \leq 0.9\right),
\]

i.e., the probability that the value of your portfolio drops by more than 10%.

Let \(L \) be the (loss) event that \(\frac{W_T}{W_0} \leq 0.9 \). You can estimate the probability of \(L \) using the following characteristic function, where \(\mathbf{X} = (S_a(T), S_b(T)) \):

\[
I_L(\mathbf{X}) = \begin{cases} 1, & \text{if } \frac{n_a S_a(T) + n_b S_b(T)}{n_a S_a(0) + n_b S_b(0)} \leq 0.9 \\ 0, & \text{otherwise} \end{cases}
\]

computing \(N \) realizations of this characteristic function, and dividing the sum by \(N \):

\[
\hat{\theta}_N = \frac{I_L(\mathbf{X}_1) + I_L(\mathbf{X}_2) + \cdots + I_L(\mathbf{X}_N)}{N}
\]

Use Monte Carlo simulation to estimate this probability. Use the following parameter values:

- \(T = 0.5 \) years
- \(\mu_a = 0.15, \sigma_a = 0.20 \)
- \(\mu_b = 0.12, \sigma_b = 0.18 \)
- \(S_a(0) = $100, S_b(0) = $75 \)
- \(n_a = n_b = 100 \) shares

(Note that these parameter values give \(W_0 = $17,500 \).)

Implement a Monte Carlo simulation model for this portfolio using R. Experiment with various values for \(N \). Experiment with various values for \(T \), the terminal time in years. Generate some meaningful histograms. What kind of decisions can you make based on your results?

Submitting: Package your work (R source, appropriately labeled histograms as PNGs, a README containing appropriate discussion) into a gzipped tarball similar and drop your tarball into the shared Box folder for this class. Your lab is due by 23:59:59 on Sun 18 Feb.