Course Description:

Think for a moment about your parents’ generation:

Cameras required film; recorded music was played using vinyl or cassettes; renting a movie required a video cassette player; and calling while away from home often required locating a pay phone.

Think now about your own generation:

you use digital cameras, CDs, DVDs, mobile phones. Digital music and video for iTunes is ubiquitous.

The transition from your parents’ analog generation to your own digital generation has been swift, revolutionary, challenging and in some ways deeply mysterious. How can a sequence of 0s and 1s accurately represent the art of our favorite musicians? How can a single hand-held device allow us to communicate by voice, picture, video, and text, while simultaneously serving as a Web browser, email client, personal digital assistant, music player, and game console, while a mere 20 years ago, some of those services didn’t even exist, and the remaining ones would have required multiple large and expensive devices? The fundamental principles that facilitate the current generation of digital communication, information processing, and computation provide the motivation for this course.

The purpose of this course is to provide an introduction to computer science as a discipline. Computer science is much more than programming. We like to say that programming is to computer science as microscopy is to biology. No one becomes a competent biologist without mastering the skills necessary for microscopy; but being a master at microscopy does not a biologist make, nor does a biologist spend all of her time behind the microscope. A similar argument holds for computer science and programming:

Learning to master the basics of computer programming is necessary to become a computer scientist. However, the discipline of computer science is about discovering accurate solutions to interesting, challenging problems that have real-world impact, and about representing these solutions in a precise way so that computers can assist with solving the problems.

Therefore, in this course we will investigate problem solving using computer programming. All digital communication, information processing, and computation systems rely on precise algorithms expressed as computer programs. We will study the capabilities and limitations of such algorithms by considering abstract representations of the complex processes required by some commonly-used digital systems, e.g.:

- instant messenger (text-based chat) applications;
- digital image representation and processing; and
- simple computer network servers.

You will also learn the basics of computer programming using the Java programming language, covering topics such as object-oriented programming, flow control structures, string processing, simple data structures, and recursion. Your programming projects for the course will require you to implement in Java working solutions for systems such as those discussed above.

Although the programming work in this course will focus on the application of programming to digital communication and information processing systems, the programming skills you will develop along the way will be
applicable to a wide variety of areas — speaking pragmatically, after this course you will be sufficiently prepared
to take CMSC 221. You will also have a much better appreciation for the discipline of computer science — that it
is much more (and much more interesting) than just programming.

This course satisfies the Symbolic Reasoning Field of Study (FSSR), of which a description is available on the
Office of the Registrar's page:

http://oncampus.richmond.edu/academics/registrar/grad/gened.html

Labs and Homework:
- Lab sessions will be held each week of the semester. A description of each week's lab will be handed out
 in advance, and you will be expected to plan your approach to the assignment before the start of that lab
 session.
- Lab assignments will be submitted electronically (via Netfiles), and will be accepted until 11:00 PM on the
 Monday following your lab session. No lab assignments will be accepted after that time, but your lowest
 score on submitted lab assignments will be dropped. (Hence, it is in your best interests to submit all
 assignments on time, even if incomplete.)
- There will be some homework assignment, though this will not be a regular (e.g., weekly) occurrence.
 Assigned homework will, however, be collected and graded. Late homework will not be accepted. No
 homework grades will be dropped.
- We will use the course Web page and email for assignment-related information. It is your responsibility to
 check both frequently.

Exams:
- Two in-class written exams, limited to the 50-minute class block, and an in-class comprehensive final exam,
 limited to the 3-hour exam block. If you are absent on the day of an exam, you will not be permitted to
 make up the exam. Your final exam grade will be substituted for the grade of a missed test.
- A take-home programming exam, to be assigned and completed during the final weeks of the semester. This
 programming exam may be submitted late, subject to a penalty of 10% per calendar day.

Grading Policy:
Final letter grades will be assigned per the traditional 10-point scale (≥ 90% is at least an A–; < 90% but ≥ 80%
 is at least a B–; etc.), according to the following percentages:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Assignments/Homework</td>
<td>30%</td>
</tr>
<tr>
<td>In-Class Written Exams</td>
<td>25%</td>
</tr>
<tr>
<td>Take-Home Programming Exam</td>
<td>25%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20%</td>
</tr>
</tbody>
</table>

Attendance Policy:
- You are expected to attend each class period and each lab session for its duration. If you must miss a class
 or lab, you are responsible for any associated material. If there is a class or lab that you must miss, please
 inform me in advance.
- Any student with an excessive number of absences is subject to a failing grade of V.

Honor Code:
- Unless provided to you by me, you are not permitted to view or use existing assignments, tests, or solutions
 in any form, whether they be from a previous offering of this course or Internet-available.
- In-class written exams must be completed by you without assistance from any other person or source.
- The take-home programming exam must be treated as a take-home, open-book exam. You may use only
 your textbook, class notes, and any other instructor-approved source. You may not consult anyone other
 than the two instructors, who encourage asking questions but reserve the right not to answer (just as you
 would expect with any exam).
- Lab assignments and homework assignments may be discussed with others, but are subject to the empty
 hands policy:
You may freely discuss ideas with other students, but each student must leave the discussion without any written or otherwise recorded material.

You may not work directly with any other student on the completion of the assignment. Any manifestation of copying another student’s work for your own (whether digital, hand-written, oral, etc.) or working together on an assignment is not permitted.

• Failure to comply with these policies will be treated as an Honor Code violation.

Special Notes:

If you have a disability and want to discuss appropriate accommodations, or if your desire to observe a religious holiday presents a conflict, please contact us as soon as possible.
Course Outline:

Following is a basic list of topics to be covered this semester. Additional topics may be added as necessary. The order of these topics is subject to change.

- Being Digital
- Encoding in Binary
- Providing a GUI Interface
- Network Communication in Java
- Huffman Codes for Text
- Conditional Execution
- Transmitting Binary Signals
- Transmission Delays and Framing
- Processing Strings in Java
- Iteration
- Classes in Java
- Ethernet Operation
- Recursive Class Definitions
- Ethernet Performance
- Switched Networks
- Indexing and Image Manipulation
- Arrays and Image Manipulation
- IP Configuration and Forwarding
- Image Compression, Color Quantization
- Routing Algorithms
- Heuristics and Intractability
- TCP and Transport Protocols
- TCP Retransmission
- TCP Connection Maintenance
- Error Detecting Codes
- Network Address Translation

Important Dates:

Regular exam dates are subject to change based on the pace of the course.

- Exam 1: Friday 2 October
- Exam 2: Monday 9 November
- Final Exam: Tuesday 8 December 2:00–5:00

Fall Break: Saturday–Tuesday 10–13 October
Thanksgiving Break: Wednesday–Sunday 25–29 November