Math 211
Test Two Nov 8, 2006
Name __________________________

As usual, do not use your book, notes, or calculator.

15. Each part takes just about a single step. Do NOT simplify answers.

\(y = \ln(\tan(x)) \)

\(y' = \frac{\tan(x)}{\cos^2(x)} \cdot \sec^2(x) \)

\(y = e^{-5x} \)

\(y'' = 25e^{-5x} \) Note: SECOND deriv here.

15. Get an equation involving \(y' \) for the graph of \(x - 3x + y + 5y = 6 \)
and then determine the equation of the tangent line to that graph at the
point \((0, 1)\). Show work clearly, using \(y' \) wherever appropriate.

\[2 \quad 2 \]
\[\frac{\partial}{\partial y} \left(x - 3x + y + 5y = 6 \right) \]
\[\frac{\partial}{\partial y} \left(x - 3x + y + 5y = 6 \right) \]
\[(2y + 5)y' = -2 + 3x \]
\[y' = \frac{-2 + 3x}{2y + 5} \]

Thus the tangent line goes through \((0, 1)\) and has slope \(\frac{3}{2} \).

So has equation \(y - 1 = \frac{3}{2} (x - 0) \)

\[y = \frac{3}{2} x + 1 \]

Tangent line has equation \(y = \frac{3}{2} x + 1 \)

14. Yes or No? Put either Yes or No in each blank. (The letter \(f \) in any
of these problems is independent of the letter \(f \) in any other one of these)

Yes

Suppose a function \(f \) is differentiable at a number \(a \). Must \(f \) also be
continuous at \(a \)?

No

Suppose the graph of a function \(f \) is smooth when \(x = a \). Must that \(f \) be
differentiable when \(x = a \)?

Yes

Is there a function \(f \) and a number \(a \) such that \(f'(a) = 0 \) and also
such that \(f \) has an inflection point when \(x = a \)?

No

Must every max value for a function \(f \) also be a local max value for \(f \)?

Can a function have a local min where its derivative is positive?

Yes

Suppose \(f \) is differentiable on \([a, b]\). Must there be at least one number \(c \) in \([a, b]\) such that \(f(c) \) is as large as all other values of \(f(x) \) for \(x \) in \([a, b]\)? \(f \) is continuous on \([a, b]\), so apply Extreme Value Theorem.

Yes

Suppose \(f \) is continuous on \([a, b]\). Must there be at least one number \(c \) in \([a, b]\) such that \(f(c) \) is as large as all other values of \(f(x) \) for \(x \) in \([a, b]\)?

By Extreme Value Theorem

Do the remaining parts of this problem after finishing Problems

No

Suppose \(f \) is continuous on \([a, b]\). Must there be at least one number \(c \) in \([a, b]\) such that \(f(c) \) is as large as all other values of \(f(x) \) for \(x \) in \([a, b]\)?

Consider \(f(x) = \frac{x}{x - 1} \) with \(a = 0 \) and \(b = 1 \)

No

Suppose \(f \) is differentiable on \([a, b]\). Must there be at least one number \(c \) in \([a, b]\) such that \(f'(c) = 0 \)?

Consider \(f(x) = x \)

Suppose \(f'(x) \) is positive when \(x = c \). Must \(f \) be increasing when \(x = c \)?

No

Suppose \(f'(x) \) is positive when \(x = c \). Must \(f \) be increasing when \(x = c \)?

Consider \(f(x) = e^x \)

No

Suppose \(f' \) is positive when \(x = c \). Must \(f' \) be positive when \(x = c \)?

Consider \(f(x) = x^3 \) and \(c = 0 \)

Yes

Consider the function \(f(x) = x \). Does the Mean Value Theorem guarantee
that there is a number \(c \) in \([0, 2]\) such that \(f'(c) = \frac{1}{2} \)?

\[f'(x) = \frac{2}{x} \]

Note that \(f'(x) = \frac{2}{x} \) when \(x = 0 \)

No

Consider the function \(f(x) = x^3 \). Does the Mean Value Theorem guarantee
that there is a number \(c \) in \([-1, 1]\) such that \(f'(c) = 1 \)?

\[f'(x) = 3x^2 \]

Note that \(f'(x) = 3x^2 \) when \(x = 0 \)

No

Consider the function \(f(x) = x^3 \). Does the Mean Value Theorem guarantee
that there is a number \(c \) in \([-1, 1]\) such that \(f'(c) = -1 \)?

\[f'(x) = 3x^2 \]

Note that \(f'(x) = 3x^2 \) when \(x = 0 \)

No

Consider the function \(f(x) = x^3 \). Does the Mean Value Theorem guarantee
that there is a number \(c \) in \([-1, 1]\) such that \(f'(c) = 1 \)?

\[f'(x) = 3x^2 \]

Note that \(f'(x) = 3x^2 \) when \(x = 0 \)

Yes

Consider the function \(f(x) = x^3 \). Does the Mean Value Theorem guarantee
that there is a number \(c \) in \([-1, 1]\) such that \(f'(c) = -1 \)?

\[f'(x) = 3x^2 \]

Note that \(f'(x) = 3x^2 \) when \(x = 0 \)

Yes

Consider the function \(f(x) = x^3 \). Does the Mean Value Theorem guarantee
that there is a number \(c \) in \([-1, 1]\) such that \(f'(c) = 1 \)?

\[f'(x) = 3x^2 \]

Note that \(f'(x) = 3x^2 \) when \(x = 0 \)

Yes
6. Consider a function \(f \) all of whose points lie above the \(x \)-axis such that \(f \) has each of the following 10 additional properties:

1) \(f'(x) < 0 \) for all \(x \) in the interval \((-\infty, 1)\)
2) \(f'(1) = 0 \)
3) \(f'(x) < 0 \) for all \(x \) in the interval \((1, 4)\)
4) \(f \) is continuous at \(4 \)
5) \(f'(4) \) does not exist
6) \(f''(x) > 0 \) for all \(x \) in the interval \((4, +\infty)\)
7) \(f''(x) < 0 \) for all \(x \) in the interval \((-\infty, 1)\)
8) \(f''(x) < 0 \) for all \(x \) in the interval \((1, 3)\)
9) \(f''(x) > 0 \) for all \(x \) in the interval \((3, 4)\)
10) \(f''(x) < 0 \) for all \(x \) in the interval \((4, +\infty)\).

Based solely on the information provided above about \(f \), answer parts (a) through (d).

(a) At what value of \(x \) in the interval \([1, 3] \) must \(f \) have its smallest value?
Answer: when \(x = 3 \)

(b) \(f \) has an inflection point when \(x = \frac{1}{3}, 4 \) (give all answers, if there are any answers).

(c) Critical numbers occur when \(x = 1, 4 \) (give all answers, if there are any answers).

(d) Is it possible for an \(f \) satisfying the given conditions to have an absolute maximum value?
- yes \(\checkmark \) no \(\not\checkmark \) Follows from properties (6) and (7)

(e) Graph \(f \). IF YOUR GRAPH APPEARS TO HAVE BENDS THAT CONTRADICT THE ABOVE INFO, YOU CAN LOSE ALL 10 POINTS. So draw your graph precisely and neatly. Here’s how you should proceed:
First sketch your graph in the scratch work area on the right. Make sure all points of \(f \) lie above the \(x \)-axis. Then systematically check each of the given 10 properties of \(f \) for your tentative sketch. Only then should you copy your graph below.
Each of the stated properties is worth 1 point.

IF TIME REMAINS, BE SURE TO FINISH PROBLEM 4.

PLEDGE: On my honor I have neither given nor received unauthorized help on this test.