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Abstract

Golay codewords are useful for transmission schemes such as OFDM, and
[MacWilliams/Sloane] demonstrated that these codewords are bent functions
contained in second order Reed-Muller codes. This paper investigates the
intersection between these codes and Kerdock-like codes.
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1 Introduction

1.1 Purpose

This paper examines the union of cosets of first order Reed-Muller in the second
order Reed-Muller code. One version of the Nordstrom-Robinson Code contains six
cosets with Golay cosets and this example motivates the work done in this paper.
We investigate collections of Golay cosets, the sum of whose elements is always bent,
and try to maximize the number of cosets that have Golay representatives. The fact
that the sum of any two codewords is bent guarantees a minimum distance between
any two codewords, and thus a set error correcting capability, while the presence
of a maximum number of Golay codewords minimizes the power profile of the code
when transmitted.

The two cases of length 26 and 28 are examined in this paper. The paper attempts
to solve the problem from two perspectives. By using the property that the Kerdock
code, which is linear in Z4, can be expressed in binary as a union of cosets with the
property that the sum of any two codewords is bent, the number of these cosets that
had quadratic Golay representatives was maximized. From another perspective,
quadratic Golay codewords were generated with the condition that the sum of the
codewords was bent.

1.2 Background

1.2.1 Reed-Muller Codes

Reed-Muller codes are binary linear codes. A binary linear code is the row space of
a particular generator matrix. The generator matrix for the first order Reed-Muller
codes of length 2m has m + 1 rows. The first row is always 1, the all one codeword.
The next row has 2m−1 0’s followed by 2m−1 1’s, and the ith row is written as 2m−i

0’s followed by 2m−i 1’s repeated i times. The generator matrix for the first order
Reed-Muller code of length 24 = 16 contains 5 rows:

1
v1

v2

v3

v4




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1




The Reed-Muller code of order r and length 2m, R(r, m), has a generator matrix
that includes all the vectors in the generator matrix of the first order Reed-Muller
code of the same length and all the products of these basis vectors up to order r. For
example, the generator matrix for R(2, 4) includes all possible linear and quadratic
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terms:
1
v1

v2

v3

v4

v1v2

v1v3

v1v4

v2v3

v2v4

v3v4




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1




Theorem 1 The properties of the R(r, m), 0 ≤ r ≤ m, are as follows:
Each codeword has length n = 2m.
The minimum distance between codewords is d = 2m−r.
The number of codewords is 2

∑r
i=0 (m

i ).
Let vi denote the ith row of the generator matrix of R(1, m). Any codeword in
R(1, m) can be written

u01 +
m∑

i=1

uivi

or as a linear combination of these rows vi such that ui ∈ {0, 1}.

Proof: For proof of these properties, consult [MacWilliams/Sloane]. �

There are many codes that, while they may look different, have the same properties
(such as length and minimum distance between codewords) as the Reed-Muller code.
All of these codes are equivalent. For our purposes, we only consider the Reed-Muller
code as we have defined it, and it is important that the codewords and generator
matrix be exactly as we have constructed them.

1.2.2 Boolean functions

Let v = (v1, ..., vm) be the set of all binary m-tuples. A Boolean function is any
function f(v) = f(v1, ..., vm) that takes on the values of either 0 or 1 for each v. A
Boolean function can be represented by a truth table which shows the value of f at
each of its n = 2m positions. The binary vector f is a vector of length n = 2m that
shows all the values of f .

A Boolean function can also be represented by a polynomial of the terms v1, ..., vm.
The following theorem, see [Dillon] for details, gives an algorithm for finding that
polynomial.
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Theorem 2 Every Boolean function

f : F n �→ F

is given by a unique reduced polynomial

f(v) =
∑

x∈F m

g(x)vx1
1 vx2

2 . . . vxn
n

in the n coordinate variables v1, v2, . . . , vn. Where

g(x) =
∑
u⊂x

f(u), for all x ∈ F m,

and u ⊂ v means ui = 1 ⇒ vi = 1, i ≤ n.

1.2.3 Hadamard transforms

A Hadamard matrix of order n is an n × n matrix of ±1’s such that

HHT = nI

or any two distinct rows are orthogonal and the dot product of a row with itself is
n. Multiplying any row or column by −1 changes a Hadamard matrix into another
Hadamard matrix. Thus it is possible to normalize any Hadamard matrix by mul-
tiplying rows and columns by −1 to change the first row and column to all +1’s;
this is called the normalized Hadamard matrix. Normalized Hadamard matrices of
orders 1, 2, 4 are shown below, with − substituted for −1.

H1 = (1) H2 =

(
1 1
1 −

)

H4 =




1 1 1 1
1 − 1 −
1 1 − −
1 − − 1




These Hadamard matrices are of a special class called Sylvester matrices. A Sylvester
matrix is any Hadamard matrix such that

H2n =

(
Hn Hn

Hn −Hn

)

is a Hadamard matrix of order 2n.

Lemma 3 If n = 2m and u1, ..., un are all the distinct binary m-tuples, the matrix
H = (hij) where hij = (−1)ui·uj is a Sylvester matrix of order n.
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Proof: We proceed by induction on m. When m = 1, the matrix H is

H =

(
1 1
1 −

)

or the Sylvester matrix H21 or H2. Assume that the statement is true for all binary
m-tuples. Now consider the matrix generated from the binary (m+1)-tuples. The
set of (m+1)-tuples is the union of the sets of 0 concatenated with each m-tuple and
1 similarly concatenated. Thus the dot product of any (m+1)-tuple is the sum of
the dot products of the original m-tuples and the dot product of the concatenated
elements. The dot product of the (m+1)-tuples will be the same as the dot product
of the m-tuples provided that one of the concatenated elements is a 0. Only when
both concatenated elements are 1 will be dot products be changed, and then they
will all be one greater than the original dot products of the m-tuples, changing the
sign of each element of the matrix H that corresponds to these (m+1)-tuples. These
sign changes all occur in the lower-right quarter of the matrix H2m+1 . Thus the
matrix is

H2m+1 = H2n =

(
Hn Hn

Hn −Hn

)
or the Sylvester matrix of order 2n. �

Given a real vector X = (x1, ...xn) and a Hadamard matrix of order n, the
Hadamard transform of X is

X̂ = XH.

Let F m be the set of binary m-tuples. The entries (−1)u·v, for u, v ∈ F m, form a
Hadamard matrix of order n = 2m. If f is a Boolean function defined on F m, its
Hadamard transform f̂ is

f̂(u) =
∑

v∈F m

(−1)u·vf(v), u ∈ F m.

It is convenient to have a method of writing a real vector obtained from the binary
vector by replacing all 1’s with −1’s and all 0’s with +1’s. The component of this
real vector F in the position corresponding to u is F (u) = (−1)f(u). The Hadamard
transform of this vector F is

F̂ (u) =
∑

v∈F m

(−1)u·vF (v), u ∈ F m

=
∑

v∈F m

(−1)f(v)+u·v

The distribution of the weights of codewords in cosets of R(1, m) is structured.
For instance, all codewords in the zero coset of R(1, 4) are weight 8 since this
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coset is really just the Reed-Muller code itself. Other cosets have structured weight
distributions as well. As an example, the coset of R(1, 4) with coset representative
v1v2 +v2v3 +v3v4 contains codewords of weight 6 and weight 10 only, evenly divided
between the two weights.

Theorem 4 The weight distribution of the coset of R(1, m) that contains f is

1

2
(2m ± F̂ (u)).

Proof: Consider the binary vector f +
∑m

i=1 uivi, ui ∈ {0, 1}. The vth element of
this vector is

f(v) + u1v1 + u2v2 + ... + umvm = f(v) +
m∑

i=1

uivi = f(v) + u · v.

If f(v) + u · v = 0, then (−1)f(v)+u·v = 1; if f(v) + u · v = 1, then (−1)f(v)+u·v = −1.
The sum ∑

v∈F m

(−1)f(v)+u·v

is the Hadamard transform F̂ (u) and is equal to the number of 0’s (f(v) +u · v = 0)
minus the number of 1’s (f(v) + u · v = 1) in the vector f +

∑m
i=1 uivi. The distance

between two codewords is the number of positions in which the codewords differ, or
equally the number of 1’s in the sum of the two codewords. Thus

dist

{
f ,

m∑
i=1

uivi

}

is the same as the number of 1’s in their sum. Since there are 2m elements in these
vectors, to find the number of 0’s minus the number of 1’s we must subtract twice
the distance between the two summed vectors from 2m. Therefore

F̂ (u) = 2m − 2 dist

{
f ,

m∑
i=1

uivi

}

or

dist

{
f ,

m∑
i=1

uivi

}
=

1

2
(2m − F̂ (u)).

For the complement of the codeword f +
∑m

i=1 uivi, f + 1 +
∑m

i=1 uivi, F̂ (u) is the
number of 1’s minus the number of 0’s. Thus

F̂ (u) = 2 dist

{
f , 1 +

m∑
i=1

uivi

}
− 2m
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or

dist

{
f , 1 +

m∑
i=1

uivi

}
=

1

2
(2m + F̂ (u)).

Since R(1, m) can be written as u01+
∑m

i=1 uivi, ui ∈ {0, 1}, the minimum distance

between the vector f and any codeword in R(1, m) is 1
2
(2m ± F̂ (u)), u ∈ F m. �

1.2.4 Bent Functions

A Boolean function f(v1, ..., vm) is bent if the Hadamard transform coefficients are
all F̂ (u) = ±2m/2.
Example. Let m = 2 and f(v1, v2) = v1v2, where the kth position of f is 1 if and
only if the kth positions of v1 and v2 are both 1. The truth table for f is

v1 = 0 0 1 1
v2 = 0 1 0 1
f = 0 0 0 1

and the Hadamard transform coefficients, F̂ (u) =
∑

v∈F m(−1)f(v)+u·v , are

F̂ (0 0) = 1 + 1 + 1 − 1 = 2

F̂ (0 1) = 1 − 1 + 1 + 1 = 2

F̂ (1 0) = 1 + 1 − 1 + 1 = 2

F̂ (1 1) = 1 − 1 − 1 − 1 = −2

Since each Hadamard transform coefficient is F̂ (u) = ±2m/2 = ±2, the function
f(v1, v2) = v1v2 is bent.

Theorem 5 Let h(u1, ...um, v1, ..., vn) = f(u1, ..., um) + g(v1, ..., vn). The function
h is bent if f(u1, ..., um) is bent and g(v1, ..., vn) is bent.

Proof: Let u ∈ F m and v ∈ F n such that w = (u, v) and w ∈ F m+n. The Hadamard
transform for h is

Ĥ(w) =
∑

t∈F m+n

(−1)h(t)+w·t

where t = (r, s), r ∈ F m and s ∈ F n. The function h(t) can be written as h(r, s) or
as the sum of two functions, h(r, s) = f(r) + g(s); similarly, w · t = (u, v) · (r, s) =
u · r + v · s. The sum is then

Ĥ(w) =
∑

r∈F m

(∑
s∈F n

(−1)f(r)+g(s)+u·r+v·s
)
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=
∑

r∈F m

(∑
s∈F n

(−1)f(r)+u·r(−1)g(s)+v·s
)

=

(∑
r∈F m

(−1)f(r)+u·r
)(∑

s∈F n

(−1)g(s)+v·s
)

= F̂ (u)Ĝ(v)

and all the Hadamard transform coefficients for h are Ĥ(w) = ±2(m+n)/2. �

Corollary 6 The function f(v1, ..., vm) = v1v2 + v3v4 + ... + vm−1vm is bent for any
even m ≥ 2.

Proof: The assertion follows clearly from Theorem 4 and the fact that v1v2 is bent.
�

1.2.5 Cosets of First Order Reed-Muller

The first order Reed-Muller code, R(1, m), is a group under component-wise addition
modulo 2. Cosets of R(1, m) are generated by adding a length n = 2m codeword
to each codeword in R(1, m) component-wise modulo 2. Thus each coset can be
written as

w +

(
u01 +

m∑
i=1

uivi

)
, ui ∈ {0, 1}

We have already shown that the weight distribution of any coset of R(1, m) is
determined by the Hadamard transform of a contained codeword f . We shall now
show that if f(v) and g(v) are affinely equivalent, that is g(v) = f(Av +B) for some
m×m binary matrix A and some binary m-tuple B, then the cosets of R(1, m) that
contain f and g have the same weight distribution.

Theorem 7 Let the Boolean functions f and g be related by g(v) = f(Av + B),
where v ∈ F m, A is a binary invertible m × m matrix, and B is a binary m-tuple.
The cosets of R(1,m) containing f and g have the same weight distribution.

Proof: We prove that the sets {±Ĝ(u) : u ∈ F m} and {±F̂ (u) : u ∈ F m} are equal
since the weight distributions of the two cosets is determined by the Hadamard
transforms of the functions. Since g(v) = f(Av + B),

Ĝ(u) =
∑

v∈F m

(−1)u·vG(v)

=
∑

v∈F m

(−1)u·vF (Av + B).
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Setting w = Av + B, we find that v = A−1w + A−1B. Substituting this value for v
in the summation yields

Ĝ(u) =
∑

w∈F m

(−1)u·(A−1w)+u·(A−1B)F (w + B + B)

=
∑

w∈F m

(−1)u·(A−1w)(−1)u·(A−1B)F (w)

= ±
∑

w∈F m

(−1)u′·wF (w), u′ = (utA−1)t

= ±F̂ (u′)

Since the sets of Hadamard transforms are equal, the cosets containing f and g have
equal weight distributions. �

The Nordstrom-Robinson code is a set of eight cosets of R(1, 4) contained in
R(2, 4). Similar to the R(1, 4) code, the N16 code is length n = 24. It contains
a total of 256 codewords in its eight cosets, but unlike R(1, 4), it is not a linear
code over binary since it is possible to add two codewords from different cosets and
have a codeword not contained in any coset as the sum. Since the sum of any two
codewords in N16 is a bent codeword, the minimum distance in the Nordstrom-
Robinson code is 6. For proof of this, see [MacWilliams/Sloane, 426]. Note that
R(1, 4) ⊂ N16 ⊂ R(2, 4).

1.2.6 Golay Codewords

Let f(v1, ..., vm) = vα1vα2 + vα2vα3 + · · · + vαm−1vαm such that the vαi
’s are distinct

and elements of the generator matrix of R(1, m), m is even. Any codeword that has
such a function f(v) generating its reduced polynomial is a Golay codeword.

Theorem 8 Any function f(v) such that f is a Golay codeword is bent.

Proof: Let f(v1, ..., vm) = vα1vα2 + vα2vα3 + · · · + vαm−1vαm . Let A be a binary,
invertible m × m matrix, m is even, with the form



1 0 0 0 0 0 · · · 0 0
0 1 0 0 0 0 · · · 0 0
1 0 1 0 0 0 · · · 0 0
0 0 0 1 0 0 · · · 0 0
1 0 1 0 1 0 · · · 0 0
0 0 0 0 0 1 · · · 0 0
...

...
...

...
...

...
. . .

...
...

1 0 1 0 1 0 · · · 1 0
0 0 0 0 0 0 · · · 0 1
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Let v = (v1, . . . , vm) be a row vector. Then vA maps each vi to itself if i is even, or
to the sum of all terms with odd i greater than or equal to the i of the term being
mapped if i is odd. Consider f(vA). It is the sum (vα1 + vα3 + · · · + vαm−1)(vα2) +
(vα2)(vα3 +vα5 + · · ·+vαm−1)+(vα3 +vα5 + · · ·+vαm−1)(vα4)+(vα4)(vα5 +vα7 + · · ·+
vαm−1) + · · · + (vαm−3 + vαm−1)(vαm−2) + (vαm−2)(vαm−1) + (vαm−1)(vαm). Note that
the first term, originally vα1vα2 , is vα2 multiplied by all the vαi

, i is odd. The second
term is vα2 multiplied by all vαi

, i is odd and strictly greater than 1. Since these
are binary vectors, adding a vector to itself produces the all 0 vector. Therefore
the sum of the first two terms reduces to vα1vα2 after cancellation. We can clearly
continue to cancel terms from each pair of products. In the third and fourth terms
cancellation leaves only vα3vα4 , and so on for each pair of terms. Therefore f(v)
is affinely equivalent to the bent codeword v1v2 + v3v4 + · · · + vm−1vm and bent by
Theorem 6. �

We shall be using as coset representatives for the N16 code six Golay codewords,
the all zero codeword, and the codeword containing all possible quadratic terms in
R(1, 4). The polynomials for the Golay representatives are

v1v2 + v2v3 + v3v4 v2v1 + v1v4 + v4v3

v4v1 + v1v3 + v3v2 v1v4 + v4v2 + v2v3

v1v3 + v3v4 + v4v2 v3v1 + v1v2 + v2v4

and the polynomial with all quadratic terms is v1v2 +v1v3 +v1v4 +v2v3 +v2v4 +v3v4.

1.2.7 Some Useful Notation

Codewords with only quadratic terms can be represented by a graph in which each
edge represents a quadratic term that is the product of the two vertices it connects.
The vertices are numbered 1, 2, . . . , m, starting with the uppermost point to the left
proceeding clockwise, and represent the terms v1, v2, . . . , vm. Thus the quadratic
term v1v2 is represented by the line segment from point 1 to point 2, and the vector
vivj is always mapped to the segment connecting points labeled i and j. In R(2, 4),
the codeword v1v3 + v2v3 + v2v4 + v3v4 can be represented by:

10



The codeword v1v2 + v1v4 + v2v3 + v3v5 + v3v6 + v4v5 + v5v6 in R(2, 6) can be
represented by the following graph.
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We shall be using as the coset representatives of the N16 code the following set of
codewords. Six of these eight coset representatives are Golay codewords, the other
two being the codewords containing every quadratic term possible from R(2, 4) and
the zero codeword which has as its coset R(1, 4). The seven representatives that
have graphs - the zero coset representative has an empty graph as it contains no
quadratic terms - are drawn below.
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Since we will be concerned with whether or not the codeword produced by the
sum of two bent codewords is bent, we introduce a method for determining if the sum
of two bent functions is a bent function. First determine the reduced polynomial
for both functions. Graph both functions as detailed previously. To add the graphs,
draw the graph that contains all the edges of both graphs, but delete all the edges
that both graphs share. If gi is an edge of either graph G1 or G2, the graphs of the
original bent functions, then the sum is the set GΣ = {gi : gi ∈ G1

⋃
G2−G1

⋂
G2}.

To check if GΣ is bent, it is possible to compute ĜΣ(u), but it is simpler to construct
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and use an adjacency matrix. This adjacency matrix is

A =

{
aij = 1 if the ith and jth point are connected by an edge in GΣ

aij = 0 if the ith and jth point are not connected by an edge or if i = j

The adjacency matrix A has 0’s along its main diagonal and is symmetric. Row
reduce A modulo 2; if A is of full rank, then GΣ is bent. If A is of less than full
rank, GΣ is not bent. For proof of this, see [MacWilliams/Sloane, 441].

Theorem 9 The maximum number of Golay coset representatives a code may con-
tain and still have all pairwise sums of codewords be bent is

(
m
2

)
.

Proof: Consider the graph of a Golay codeword. Since each vertex is connected to
either 1 or 2 other vertices, all the rows of the adjacency matrix must have weight 1
or 2. No vertex is connected to itself so there are a maximum of

(
m−1

1

)
+
(

m−1
2

)
=
(

m
2

)
ways to write a row of the adjacency matrix of a Golay codeword. If two codewords
have adjacency matrices such that there is a row Ai that is the same in both matrices,
then the adjacency matrix of the sum of these codewords will have a row of all
zeros, and thus will not be of full rank. Therefore the maximum number of Golay
codewords that can be contained in a code such that the sum of any two codewords
is bent is

(
m
2

)
. �

1.2.8 Kerdock Codes

The Nordstrom-Robinson code is the smallest of the Kerdock codes. These codes
exist for even m ≥ 4 and have the following properties:
Similar to R(1, m), K(m) has length n = 2m.
The R(1, m) code has 2m+1 codewords and K(m) is merely 2m−1 cosets of R(1, m)
within R(2, m), so K(m) has 22m codewords.
The minimum distance between codewords is 2m−1 − 2m/2−1.
In general it is true that R(1, m) ⊂ K(m) ⊂ R(2, m) with the Nordstrom-Robinson
code being the Kerdock code for m = 4.

The Kerdock code as defined is not a linear code. It is possible to add two
codewords of K(m) and find their sum to be a codeword not contained in the code.
It is possible to generate a code that is equivalent to K(m) and linear, but over Z4

instead of Z2. To do this we look at cyclic codes and their polynomial representation.
Let f(x) divide xn − 1 over Z2. The set of polynomials {g(x)f(x) : deg(g) <
n − deg(f)} defines a cyclic code over Z2.
Example. Let n = 7; f(x) = x3 + x + 1 divides x7 − 1 over Z2. The cyclic
code is then {g(x)(x3 + x + 1) : deg(g) < 4}. Since all the polynomials of the form
g(x)f(x) can be written as linear combinations of the polynomials 1×f(x), x×f(x),
x2 × f(x), and x3 × f(x), the generator matrix for this code will be 4 × 7. This
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generator matrix is written with the coefficients of the polynomials as the entries,
with the first column corresponding to the constant term or x0, the second column
corresponding to x1, and so on with the last column corresponding to x6. This
particular matrix is 


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1




Cyclic codes are linear. They also have the property that x1x2 · · ·xn ∈ C implies
xnx1 · · ·xn−1 ∈ C, where xi is the ith term of any codeword. To construct a code
equivalent to K(m), find a polynomial f(x) that divides xn−1. Define two additional
polynomials, d(x) and e(x), where d(x) is the polynomial found by deleting all
the even-powered terms of f(x) and keeping only the odd-powered terms. The
polynomial e(x) is found by deleting the odd-powered terms and retaining only the
terms of even power. Now our new cyclic code over Z4 can be generated by the
polynomial g(x2) = (d(x))2 − (e(x))2 (mod 4). The final polynomial, g(x), can be
found from g(x2) and generates a cyclic code over Z4 just as f(x) generated a cyclic
code over Z2.
Example. Since f(x) = x3 + x + 1, d(x) = x3 + x and e(x) = 1. We must find the
polynomial g(x) to construct the code, so the first step is to find g(x2). Doing the
arithmetic modulo 4, we find g(x2) = x6 + 2x4 + x2 − 1 ≡ x6 + 2x4 + x2 + 3. Thus
g(x) = x3 + 2x2 + x + 3. The generator matrix for the new cyclic code is


3 1 2 1 0 0 0
0 3 1 2 1 0 0
0 0 3 1 2 1 0
0 0 0 3 1 2 1




Since this is a cyclic code over Z4, the codewords generated can have each row appear
multiple times in its reduced polynomial form - up to 3 times - before cancellation.
Thus there are 44 = 256 codewords in this cyclic code. Adding a parity check bit to
each row enlarges the matrix to 4× 8. We now have an almost cyclic code with the
generator matrix 


3 1 2 1 0 0 0 1
0 3 1 2 1 0 0 1
0 0 3 1 2 1 0 1
0 0 0 3 1 2 1 1




This code is length n = 8 with 256 codewords. This code is equivalent to the K(4) or
the Nordstrom-Robinson code, but we must map it back into binary to see this. This
mapping is accomplish by the use of an explicit gray map that preserves distance
- Lee distance in quaternary and Hamming distance in binary - between the two
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codes. The mapping is
0 �→ 00 1 �→ 01

2 �→ 11 3 �→ 10

The new code is length n = 16 with 256 codewords, exactly like the Nordstrom-
Robinson code. To fully see that these codes are identical, we can exchange columns
to make the derived Kerdock code match the Nordstrom-Robinson code in all re-
spects. By adding a parity check bit to the generator matrix over Z4, gray-mapping
the full code - not just the generator matrix - into Z2, and reordering the columns,
it is possible to generate the K(m) code from a cyclic code over Z4.

2 Observations

2.1 Preliminary Observations

By observing the Nordstrom-Robinson code, a few properties were immediately
apparent. All the Golay codewords which were present in the form of the code
with which we were working had a complement codeword which was a reflection,
or a rotation, of that codeword. Thus we attempted to look for symmetries in
Golay codewords in R(2, 6). The results revealed different properties than those
encountered in R(2, 4).

Our first observation was that the sum of a Golay codeword and its reflection
across any axis of its graph was not bent. A computer program, which ran over all
Golay codewords of length n = 26, confirmed these results.

It became clear after a few attempts that rotation of graphs offered a more
practical way of creating sets of codewords whose sums were bent. In order to
simplify the work with rotations, a new notation was introduced. Every Golay
codeword could be represented by a string of six digits in Z6. For example, the
codeword v1v3 + v3v6 + v6v2 + v2v4 + v4v5 could be simply represented by the string
136245. The graph that represents this codeword is
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0 1

2

34

5

Rotating the graph of this codeword by one shift counterclockwise gives
0 1

2

34

5

which is equivalent to adding 1 to each position in the string of digits modulo 6,
yielding the string 136245. Note that while the graphs are labeled beginning with
0 to facilitate rotation, the generator matrix of R(r, m) has no row v0. The row v1

corresponds to the vertex labeled 0 in every graph.
The sum of any codeword with its rotation is easily obtained following the no-

tation described in the Background, and the adjacency matrix was used to find out
whether that sum was bent or not. In this example, the sum of these two codewords
can be represented graphically by:
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The adjacency matrix for this codeword is


0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 1
1 0 0 0 1 0
0 0 1 1 0 1
0 1 1 0 1 0




and, since this matrix has full rank, the sum of the codeword v1v3 + v3v6 + v6v2 +
v2v4 + v4v5, and its first rotation is bent.

2.2 Golay Codewords of length 26

The total number of Golay codewords in R(2, 6) is 6!
2

= 360, but many of these
codewords are equivalent under rotation. If two codewords are defined as equivalent
if and only if one codeword’s graph can be rotated to produce the other codeword’s
graph, then there are 64 distinct codewords in R(2, 6). Those 64 codewords are
divided into 5 sets whose elements share the same properties toward their rotations.

(i) Among the 64 distinct Golay codewords, 18 have the property that when summed
with any of their rotations, none of the resulting codewords were bent.
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(ii) There are 12 codewords whose sum with their first clockwise rotation is bent.
Their sum with their first counter-clockwise rotation is bent too, but since the
sum of any of these codewords with its second rotation in either direction is
not bent, one can only chose a set of two vectors at a time whose sum is bent.
Any set of three vectors includes two vectors where one is equal to the other
vector rotated twice clockwise, and thus the sum of these two vectors is not
bent.

(iii) There are 20 codewords such that the sums with both their second and fourth
rotations are bent. Therefore any two elements of this set, when summed, will
yield a bent codeword as the sum. The sets which includes the first, third,
and fifth rotation of each of these vectors also has the property that the sum
of any of its two elements are bent.

(iv) Among the Golay codewords in R(2, 6), 14 codewords have the property that
their sum with their first and second rotation is bent. Since the sum of any of
these codewords with their third rotation is never bent, we could create sets
of a maximum of 3 codewords such that the sum of any two elements in the
set was bent.

(v) Among the 14 codewords in the previous set, 6 have the additional property
that they are equal to their third rotation. In fact, there are only 3 rotations of
these codewords that exist, since a rotation by 3 always gives back the original
codeword. All the codewords that are equal to their third rotation are present
in this set.

In order to maximize the number of elements in a set such that the sum of any
two elements in the set is bent, we selected members of some of the previous sets
so that the sum of their respective rotations remained bent. The maximum number
of codewords obtained this way was 9. The first six codewords come from the third
set, and the last three come from the fifth set. The graphical representation of one
of these groups of 9 is:
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There are six such sets of nine codewords such that the sum of any two codewords
is bent. All of these sets have six codewords from the third set, and 3 from the fifth
set.

An exhaustive search was run on all the Golay codewords in R(2, 6), but none
had the property that their sum with all the codewords in any of the six sets was
bent.

2.3 Mapping

By knowing a set of codewords such that the sum of any two of them is bent, we
could create a new set with the same number of codewords such that a given Golay
codeword is included in it. By finding the mapping of coordinates that changes one
of the codewords in the set into a different codeword outside the set, then applying
the same mapping to all the other codewords, a new set is created in which the sum
of any two elements is bent.

Theorem 10 Let f(u) and g(u) be Golay codewords such that their sum, h(u), is
bent. Let M be a mapping of the coordinates v1, v2, . . . , vm such that M(k(u)) =
K(uA), where A is a matrix of 0’s and 1’s such that Aij = 1 if vj is mapped to vi.
M(f(u)) + M(g(u)) is bent.

Proof: Since f(u) and g(u) are both Golay, they only contain quadratic terms, and
their sum, h(u), only contains quadratic terms. We can thus write

f(u) = uQut g(u) = uPuT h(u) = uRuT
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Where Q,P ,and R are m×m matrices such that Qij = 1 if the term uiuj is present
in the polynomial form of the codeword. The equation f(u) + g(u) = h(u) can be
written as:

uQuT + uPuT = uRuT .

In this notation,

M(f(u)) + M(g(u)) = f(uA) + g(uA)

= (uA)Q(uA)T + (uA)P (uA)T

= vQvT + vPvT , v = uA

= vRvT

= h(v)

= h(uA)

By Theorem 6, h(uA) is bent. �

2.4 Golay codewords of length 28

We attempted to extrapolate the properties of R(2, 6) to R(2, 8), but the properties
of R(2, 8) were different. While in R(2, 6) all codewords that were equal to their
halfway rotation had the property that their sum with their other rotations was
bent, such a property did not hold in R(2, 8). However, there were some interesting
results. A set of codewords existed such that the sum of any codeword in that set
with any of its eight rotations was always bent. An example of such a codeword is
12635748 whose graphic representation is:

0 1

2

3

45

6

7

By searching all the other possible Golay codewords in R(2, 8), we found that
there existed some codewords whose sum with all the possible rotations of this
codeword were bent. By carefully choosing these codewords so that their sum was
at least bent with some of their rotations, we could construct a set of 12 codewords
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such that the sum of any two of them is bent. Notice that the first 8 graphs are
simply the 8 possible rotations of 12635748, while the next 4 are the codeword
17426835 and its first three rotations.

2.5 The Kerdock Codes

Recall from the background that the Kerdock code of length 16, K(4), is equivalent
to the Nordstrom-Robinson code, N16. In order for the Kerdock code of that length
to include a maximum number of Golay codewords as coset representatives, one has
to do a mapping on the columns of the original Kerdock generator matrix. The
mapping simply permutes the position of the columns.

One property of K(m) is that is always includes a coset whose representative
is the zero codeword. Since the zero codeword is not a bent function, this coset
has a different weight distribution than the other cosets. In fact, this coset has
the same properties as R(1, m), and, upon certain mappings on the columns, the
coset can be transformed into R(1, 4) as we have constructed it. Given that both
R(1, m) and the zero coset are linear, a column mapping which produces as part of
the new code the generator matrix of R(1, m) will produce the entire code R(1, m).
Since R(1, m) ⊂ K(m), we can restrict our search of column permutations to the set
of permutations that contain R(1, m), or even simpler that contain the generator
matrix for R(1, m). The zero coset is the only coset of R(1, m) whose codewords
are not bent, and thus all the codewords of this coset of K(m) can be found quickly.
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We examined the code K(6) and attempted to find the maximum number of Golay
coset representatives (

(
6
2

)
= 15) by determining the exact column permutation.

Unfortunately there are 27 = 128 codewords in the zero coset of K(6) and so many
codewords makes for an unreasonably large number of column permutations that
might be successful. To understand how K(6) might be mapped back into the desired
form by column permutation, we examined K(4).

The generator matrix for K(4) over Z4 is


3 1 2 1 0 0 0 1
0 3 1 2 1 0 0 1
0 0 3 1 2 1 0 1
0 0 0 3 1 2 1 1




All the codewords of the zero coset of K(4) are weight 8 as this coset is really just
R(1, 4). We generated all the linear combinations of the quaternary matrix and
looked for all the codewords of weight 8. Because of the gray mapping we used,
it is possible to determine the weight of a codeword in binary by looking at its
quaternary pre-image. The weight of a codeword is twice the number of 2’s plus
the number of 1’s and 3’s. Although there must not exist more than 32 codewords
of weight 8, there are many more than 32 possible ways to generate a weight 8
codeword from 8 digits over Z4. Surprisingly, all the codewords of weight 8 were
divided into two evenly sized groups: one group of codewords consisting solely of
1’s and 3’s, and one group consisting solely of codewords of 0’s and 2’s. Thus if a
codeword contained a 1 or a 3, it could not contain a 0 or a 2, and conversely. Since
we must find the generator matrix of R(1, 4) within these 32 codewords, we decided
to work backwards from the generator matrix to the list of quaternary codes. As
shown before, the generator matrix for R(1, 4) is

1
v1

v2

v3

v4




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1




The first row, 1, is simply the row of all 2’s in quaternary. This row is present
regardless of the mapping and thus we ignore it. The last row consisting of even
alternating 0’s and 1’s is the row of all 1’s in quaternary; for the same reason we
ignore it. The other three rows consist of blocks of 0’s and 1’s in binary, a minimum
of two 0’s or 1’s in each block. Thus in quaternary these rows will be represented by
rows of 0’s and 2’s when the binary code is 00 or 11, respectively. We have reduced
our search to looking for 3 rows out of 16 (the number of rows consisting only of 0’s
and 2’s) with the property that, after a permutation of columns, the three rows will
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look like 
 0 0 0 0 2 2 2 2

0 0 2 2 0 0 2 2
0 2 0 2 0 2 0 2




which when mapped back into binary will be the three necessary rows to complete
the generator matrix of R(1, 4). We found that switching the second with the third
column and the fourth with the sixth column of the quaternary generator matrix of
K(4) produced, when mapped into binary, the correct R(1, 4) code. Thus we sought
to adapt our method to K(6). In K(6), the zero coset has 128 codewords, so the
first step is to reduce this number to a more reasonable size that we can search for
the necessary codewords to complete the generator matrix of R(1, 6). As before,
the row of all 1’s and the row of all 2’s in the quaternary code were both present,
so only 5 more rows were needed to complete the generator matrix of R(1, 6). The
rest of the rows would consist only of 0’s and 2’s, so we only had to search half
of the code of the correct rows. We also noticed that half of the rows of 0’s and
2’s were the complement of the other half, that is adding the two rows together
would produce the all 2 row. We found a set of 32 codewords such that no codeword
and its complement were present in the set, and restricted our search to that set.
At this point two assumptions were made. The first is the assumption that using
the complements of a code will not produce any new, distinct codes with different
column permutations. This assumption is based on the linearity of the code over Z4.
The second assumption was that since it was possible to permute columns of K(4)
over Z4, it will be possible to do the same in K(6). Thus no column permutations
in binary were examined, and any possible code in which the generator matrix was
found by permutations of the columns on the rows of 1’s and 3’s was neglected.

We noticed that for the zero coset of K(4), the three missing rows would have the
form shown above. Looking at the columns, it is clear that they are all the “binary”
(of 0’s and 2’s) 3-tuples. The same principle holds for K(6), though we were looking
for 5-tuples instead. Instead of switching columns, we sought to reoder them in
such a way that all the “binary” 5-tuples were present and in “binary” ascending
order. Thus any five rows that contained in their columns all the “binary” 5-tuples
contained a reordering of columns such that the generator matrix of R(1, 6) was
present once the code was mapped into binary. Even though a code might contain
the generator matrix for R(1, 6), it could still fail in other cosets. Thus we had to
first find the code and then generate every codeword in it. After we found these
codewords, we checked the reduced polynomial form of each to see if the codewords
were Golay. Since a Golay codeword cannot have any terms in its reduced polynomial
of cubic order or higher, we immediately rejected any code that contained even a
single cubic term in a codeword’s polynomial. We had a computer program search
for sets of 5 rows such that we could find the generator matrix of R(1, 6), reorder
the columns as necessary, and then check reduced polynomials. The program never
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found more than seven Golay coset representatives which implies that it was either
written incorrectly or that our assumptions reduced the search to such a level that
finding 15 Golay coset representatives was not possible.
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Appendix A
Six sets of Nine Golay Codewords in R(2, 6)

The following sets include nine codewords each, written in the short-hand nota-
tion as a string of digits (See Preliminary Observations for more detail). Notice that,
in each set, the second and the third codewords are respectively the second and the
fourth clockwise rotation of the first codeword. The fifth and the sixth codewords
are also the second and the fourth clockwise rotation of the fourth codeword. The
eigth and the ninth codewords in each set are the first and second clockwise rotation
of the seventh codeword.

{013425, 235041, 451203, 125430, 341052, 503214, 024153, 135204, 240315}
{013425, 235041, 451203, 135420, 351042, 513204, 054123, 105234, 210345}
{014325, 230541, 452103, 135420, 351042, 513204, 051423, 102534, 213045}
{031245, 253401, 415023, 143250, 205412, 421034, 042513, 153024, 204135}
{031245, 253401, 415023, 153240, 215402, 431024, 012543, 123054, 234105}
{032145, 254301, 410523, 153240, 215402, 431024, 015243, 123054, 231405}
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Appendix B
sets of twelve Golay Codewords in R(2, 8)

The following sets contain 12 Golay codewords in R(2, 8) with the property that
the sum of any two codewords is bent. Notice that the seven codewords after the
first one are just the first codewords 7 possible rotation, and that codewords 10-12
are the rotations of the ninth codeword.
{01347652, 12450763, 23561074, 34672105, 45703216, 56014327, 67125430, 70236541,

06315724, 17426035, 20537146, 31640257}
{01476352, 12507463, 23610574, 34721605, 45032716, 56143027, 67254130, 70365241,

02137564, 13240675, 24351706, 35462017}
{01524637, 12635740, 23746051, 34057162, 45160273, 56271304, 67302415, 70413526,

06315724, 17426035, 20537146, 31640257}
{01526437, 12637540, 23740651, 34051762, 45162073, 56273104, 67304215, 70415326,

02173564, 13204675, 24315706, 35426017}
{01534726, 12645037, 23756140, 34067251, 45170362, 56201473, 67312504, 70423615,

06173524, 17204635, 20315746, 31426057}
{03145276, 14256307, 25367410, 36470521, 47501632, 50612743, 61723054, 72034165,

02137564, 13240675, 24351706, 35462017}
{03452176, 14563207, 25674310, 36705421, 47016532, 50127643, 61230754, 72341065,

06315724, 17426035, 20537146, 31640257}
{03714562, 14025673, 25136704, 36247015, 47350126, 50461237, 61572340, 72603451,

02351764, 13462075, 24573106, 35604217}
{03762415, 14073526, 25104637, 36215740, 47326051, 50437162, 61540273, 72651304,

06351724, 17462035, 20573146, 31604257}
{03764215, 14075326, 25106437, 36217540, 47320651, 50431762, 61542073, 72653104,

02137564, 13240675, 24351706, 35462017}
{04135267, 15246370, 26357401, 37460512, 40571623, 51602734, 62713045, 73024156,

02573164, 13604275, 24715306, 35026417}
{04137625, 15240736, 26351047, 37462150, 40573261, 51604372, 62715403, 73026514,

02537164, 13640275, 24751306, 35062417}
{04165732, 15276043, 26307154, 37410265, 40521376, 51632407, 62743510, 73054621,

06173524, 17204635, 20315746, 31426057}
{04315267, 15426370, 26537401, 37640512, 40751623, 51062734, 62173045, 73204156,

06715324, 17026435, 20137546, 31240657}
{04317625, 15420736, 26531047, 37642150, 40753261, 51064372, 62175403, 73206514,

06751324, 17062435, 20173546, 31204657}
{04327516, 15430627, 26541730, 37652041, 40763152, 51074263, 62105374, 73216405,

02351764, 13462075, 24573106, 35604217}
{04561372, 15672403, 26703514, 37014625, 40125736, 51236047, 62347150, 73450261,

06537124, 17640235, 20751346, 31062457}
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{04571263, 15602374, 26713405, 37024516, 40135627, 51246730, 62357041, 73460152,
02137564, 13240675, 24351706, 35462017}

{04573621, 15604732, 26715043, 37026154, 40137265, 51240376, 62351407, 73462510,
02173564, 13204675, 24315706, 35426017}

{04723156, 15034267, 26145370, 37256401, 40367512, 51470623, 62501734, 73612045,
02715364, 13026475, 24137506, 35240617}

{04751263, 15062374, 26173405, 37204516, 40315627, 51426730, 62537041, 73640152,
06351724, 17462035, 20573146, 31604257}

{04753621, 15064732, 26175043, 37206154, 40317265, 51420376, 62531407, 73642510,
06315724, 17426035, 20537146, 31640257}

{05124673, 16235704, 27346015, 30457126, 41560237, 52671340, 63702451, 74013562,
06751324, 17062435, 20173546, 31204657}

{05126473, 16237504, 27340615, 30451726, 41562037, 52673140, 63704251, 74015362,
02537164, 13640275, 24751306, 35062417}

{05174326, 16205437, 27316540, 30427651, 41530762, 52641073, 63752104, 74063215,
06537124, 17640235, 20751346, 31062457}

{05436712, 16547023, 27650134, 30761245, 41072356, 52103467, 63214570, 74325601,
02573164, 13604275, 24715306, 35026417}

{05743612, 16054723, 27165034, 30276145, 41307256, 52410367, 63521470, 74632501,
06751324, 17062435, 20173546, 31204657}

{07354162, 10465273, 21576304, 32607415, 43710526, 54021637, 65132740, 76243051,
02715364, 13026475, 24137506, 35240617}

{07362451, 10473562, 21504673, 32615704, 43726015, 54037126, 65140237, 76251340,
06715324, 17026435, 20137546, 31240657}

{07364251, 10475362, 21506473, 32617504, 43720615, 54031726, 65142037, 76253140,
02573164, 13604275, 24715306, 35026417}

{07412536, 10523647, 21634750, 32745061, 43056172, 54167203, 65270314, 76301425,
06751324, 17062435, 20173546, 31204657}

{07541236, 10652347, 21763450, 32074561, 43105672, 54216703, 65327014, 76430125,
02573164, 13604275, 24715306, 35026417}
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