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Note that if r(x) and s(x) are any two functions, then
max(r,s) = (r+s+|r —s|)/2.
Therefore, if F(z) is the given function, we have

F(x) = max{—3z — 3,0} — max{5z,0} + 3z + 2
(=32 — 3+ |3z —3])/2 — (5bx + |5x])/2 + 3z + 2

1
= 1Bz =3)/2| = [52/2| -2 + 5,

so we may set f(z) = (3z — 3)/2, g(z) = 5z/2, and h(z) = —z + 3.
First factor p(z) = q(z)r(x), where ¢ has all real roots and r has all complex roots.

Notice that each root of ¢ has even multiplicity, otherwise p would have a sign change
at that root. Thus ¢(x) has a square root s(x).

Now write r(z) = H?zl(:z: — aj)(x — @;) (possible because r has roots in complex

conjugate pairs). Write Hle(x — a;) = t(z) + iu(z) with ¢,z having real coefficients.
Then for z real,

p(@) = q(x)r(z) = s(2)*(t(2) + iu(z)) (t(z) + iu(@)) = (s(@2)t(x))* + (s(x)u(z))*.

[e.e]

First solution: Computing the coefficient of " in the identity (1—2z—2%) Y
1 yields the recurrence a,.1 = 2a, + a,_1; the sequence {a,} is then characterized by
this recurrence and the initial conditions ag = 1,a; = 2.

Define the sequence {b,} by by, = a2 | + a2, boni1 = an(dp_1 + any1). Then

2 2
2b2n+1 + by, = 2anan+1 + 2a,1a, + a1+ ay
2
= 20p0n41 + Ap_10py1 +ay,
2 2 _
= a4 +a, = by,

and similarly 2by,, + bo, 1 = bapy1, so that {b,} satisfies the same recurrence as {a,}.

Since further by = 1,b; = 2 (where we use the recurrence for {a,} to calculate a_; = 0),

we deduce that b, = a,, for all n. In particular, ai + ai 11 = bonyo = agnqo.

Second solution: Note that
1 1 V2+1 N V2 -1
1—2z—2> 202 \1—(V2+ Dz 1-(1—-V2)uz
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so that a, = 2#\/5 ((V2+1)"! — (1 — v/2)"*1) . A simple computation (omitted here)

2 .2
now shows that a7 + a;, ; = azp4o.

Denote the series by S, and note that
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m=1 n=1 m=1 n=1

where the second equality follows by interchanging m and n. Thus

1 1
25 = ZZ( 3m/m (37 /m + 3" /n) (3”/n)<3m/m+3"/n))
- LE mm

- (£%)

But )", n/3" = 3/4 (since, e.g., it’s f'(1), where f(z) = > 7 2"/3" =3/(3 — x)),
and we conclude that S = 9/32.

First solution: (by Reid Barton) Let rq,..., 71999 be the roots of P. Draw a disc of
radius € around each r;, where € < 1/3998; this disc covers a subinterval of [—1/2,1/2]
of length at most 2¢, and so of the 2000 (or fewer) uncovered intervals in [—1/2,1/2],
one, which we call I, has length at least § = (1 — 3998¢) /2000 > 0. We will exhibit an
explicit lower bound for the integral of |P(z)|/P(0) over this interval, which will yield
such a bound for the entire integral.

Note that
| 1999

[P(z)] _
[P(0)]

|z — 1y

—

Il

Also note that by construction, |z — r;| > € for each x € I. If |r;| < 1, then we have

|x‘;7‘“’| > e. If |r;] > 1, then

| — 74
7l
We conclude that [, |P(x)/P(0)|dz > de, independent of P.

Second solution: It will be a bit more convenient to assume P(0) = 1 (which we may
achieve by rescaling unless P(0) = 0, in which case there is nothing to prove) and
to prove that there exists D > 0 such that fjl |P(z)|dx > D, or even such that
fol |P(z)|dx > D.

We first reduce to the case where P has all of its roots in [0, 1]. If this is not the case,
we can factor P(z) as Q(z)R(z), where @ has all roots in the interval and R has none.

=l—z/ri| >1—|z/ri| >1—-1/2=1/2 > €.
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Then R is either always positive or always negative on [0, 1]; assume the former. Let
k be the largest positive real number such that R(xz) — kx > 0 on [0, 1]; then

/ P(a)ldr = / Q) (@) dr > / Q) (R(a) — ko) da,

and Q(z)(R(z) — kx) has more roots in [0, 1] than does P (and has the same value at
0). Repeating this argument shows that fol |P(z)| dx is greater than the corresponding

integral for some polynomial with all of its roots in [0, 1].

Under this assumption, we have P(z) = c¢[[\25 (z — r;) for some r; € (0,1]. Since

P(0) = —c[[r: = 1, we have |c| > []|r;'] > 1.

Thus it suffices to prove that if Q(x) is a monic polynomial of degree 1999 with all of
its roots in [0, 1], then fol |Q(z)| dz > D for some constant D > 0. But the integral
of f01 [1.2%° |# — ;| dz is a continuous function for r; € [0,1]. The product of all of

these intervals is compact, so the integral achieves a minimum value for some r;. This
minimum is the desired D.

Note: combining the two approaches gives a constructive solution with a constant that
is better, but is still far from optimal. I don’t know offhand whether it is even known
what the optimal constant and/or the polynomials achieving that constant are.

Rearranging the given equation yields the much more tractable equation

(i, U Wy
— 6L g2
Ap—1 Ap—2 Ap—3
Let b, = a,/a,_1; with the initial conditions by = 2,b3 = 12, one easily obtains
b, =2""1(2""% — 1), and so
n—1

an — 2n(n—1)/2 H(QZ _ 1)

=1

To see that n divides a,, factor n as 2¥m, with m odd. Then note that k < n <
n(n — 1)/2, and that there exists i < m — 1 such that m divides 2° — 1, namely
i = ¢(m) (Euler’s totient function: the number of integers in {1,...,m} relatively
prime to m).

The answer is 1/3. Let G be the point obtained by reflecting C' about the line AB.
Since ZADC = ™%  we find that /ZBDE = © — 0 — ZADC = =% = ZADC =
m—/ZBDC =7 — ZBDG, so that E, D,G are collinear. Hence

|BE| |BE| _ sin(6/2)
|BC|  |BG|  sin(30/2)’

EF| =

sin(0/2) _
sin(36/2)

where we have used the law of sines in ABDG. But by I’'Hopital’s Rule, limg_,q

. cos(0/2)
hmgﬂo W = 1/3
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Suppose that P does not have n distinct roots; then it has a root of multiplicity at
least 2, which we may assume is x = 0 without loss of generality. Let z* be the greatest
power of x dividing P(x), so that P(z) = 2*R(z) with R(0) # 0; a simple computation
yields

P"(z) = k(k — 1)2"2R(x) + 2ka" 'R/ (z) + 2" R"(z).
Since R(0) # 0 and k > 2, we conclude that the greatest power of = dividing P"(z)
is 2"72. But P(x) = Q(x)P"(z), and so x? divides Q(z). We deduce (since Q is
quadratic) that Q(z) is a constant C' times z?%; in fact, C' = 1/(n(n — 1)) by inspection
of the leading-degree terms of P(z) and P"(z).
Now if P(z) = Y77 ja;a?, then the relation P(x) = Cx?P"(z) implies that a; =
Cj(j — 1)a; for all j; hence a; = 0 for j < n — 1, and we conclude that P(z) = a,2",
which has all identical roots.

We first note that

m on __ xry
I e (=

m,n>0
Subtracting S from this gives two sums, one of which is

2n+1

Z vy _Zy -2  (1—2)(1—a22y)

m>2n+1 n

and the other of which sums to zy*/[(1 — y)(1 — xy?)]. Therefore

S(x,y) = Y - vy - oy
’ (I-2)1-y) (A—2)(1—-2%) (1-y)(1—uzy?
ry(l+x +y+zy — 2°y°)

(1 —2?y)(1 — zy?)

and the desired limit is lim, )11 ry(l+x +y+ xy — 2%y?) = 3.

We make repeated use of the following fact: if f is a differentiable function on all of
R, lim, o f(z) > 0, and f'(x) > 0 for all x € R, then f(z) > 0 for all z € R.
(Proof: if f(y) < 0 for some z, then f(z) < f(y) for all z < y since f' > 0, but then

limg oo f(z) < f(y) <0.)
From the inequality f”(z) < f(x) we obtain

frf" (@) < (@) f(2) < f'(@) f(z) + f'(z)°

since f’(x) is positive. Applying the fact to the difference between the right and left
sides, we get

L@ < f@)F ).
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Adding & f'(z) f" () to both sides and again invoking the original bound f"(z) < f(z),
we get
1

S @) + (@) < F@) () + 3 @) () <

Applying the fact again, we get
1 3
SF@)f(x) < < fl2)*.
2 4

Multiplying both sides by f’(x) and applying the fact once more, we get

1 / 3 1 3
S(f @) < 1@

From this we deduce f'(z) < (3/2)3f(x) < 2f(z), as desired.

Note: I don’t know what the best constant is, except that it is not less than 1 (because
f(z) = e* satisfies the given conditions).

f(@)f' ().

We claim that the eigenvalues of A are 0 with multiplicity n — 2, and n/2 and —n/2,
each with multiplicity 1. To prove this claim, define vectors v™, 0 < m < n — 1,
componentwise by (v(™), = ¢*m? and note that the v(™) form a basis for C*. (If
we arrange the v(™ into an n x n matrix, then the determinant of this matrix is a
Vandermonde product which is nonzero.) Now note that

(Av™); = Z cos(jO + k@)™ = 3 (e”a Z etkm1)0 4 o=if Z elk(mm) .
k=1 k=1

k=1

Since Y _p_, e = 0 for integer ¢ unless n |/, we conclude that Av(™ = 0 for m = 0
or for 2 < m < n — 1. In addition, we find that (Av); = Ze= = 2Z(y("~V); and
(AvD), = 26if = 2(y(M); 5o that A(v®) £ o= V) = £2(v® £ v(=D). Thus
{v@ @ O (=) ) g1 () (=D g 4 basis for C" of eigenvectors of
A with the claimed eigenvalues.

Finally, the determinant of I + A is the product of (1 + A) over all eigenvalues \ of A;
in this case, det(I + A) = (1 +n/2)(1 —n/2) =1—n?/4.

Choose a sequence pp, ps, ... of primes as follows. Let p; be any prime dividing an
element of S. To define p;;; given py,...,p;, choose an integer N; € S relatively prime
to p1---p; and let p;j41 be a prime divisor of IV}, or stop if no such NV; exists.

Since S is finite, the above algorithm eventually terminates in a finite sequence p1, . . . , p.
Let m be the smallest integer such that p; - - - p,, has a divisor in S. (By the assumption

on S with n = p; -+ px, m = k has this property, so m is well-defined.) If m = 1, then

p1 € S, and we are done, so assume m > 2. Any divisor d of py - - - p,, in S must be a

multiple of p,,, or else it would also be a divisor of p; - - - p,,,_1, contradicting the choice

of m. But now ged(d, Np,—1) = pm, as desired.



