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A–1 Note that if r(x) and s(x) are any two functions, then

max(r, s) = (r + s+ |r − s|)/2.

Therefore, if F (x) is the given function, we have

F (x) = max{−3x− 3, 0} −max{5x, 0}+ 3x+ 2

= (−3x− 3 + |3x− 3|)/2− (5x+ |5x|)/2 + 3x+ 2

= |(3x− 3)/2| − |5x/2| − x+
1

2
,

so we may set f(x) = (3x− 3)/2, g(x) = 5x/2, and h(x) = −x+ 1
2
.

A–2 First factor p(x) = q(x)r(x), where q has all real roots and r has all complex roots.
Notice that each root of q has even multiplicity, otherwise p would have a sign change
at that root. Thus q(x) has a square root s(x).

Now write r(x) =
∏k

j=1(x − aj)(x − aj) (possible because r has roots in complex

conjugate pairs). Write
∏k

j=1(x− aj) = t(x) + iu(x) with t, x having real coefficients.
Then for x real,

p(x) = q(x)r(x) = s(x)2(t(x) + iu(x))(t(x) + iu(x)) = (s(x)t(x))2 + (s(x)u(x))2.

A–3 First solution: Computing the coefficient of xn+1 in the identity (1−2x−x2)
∑∞

m=0 amx
m =

1 yields the recurrence an+1 = 2an + an−1; the sequence {an} is then characterized by
this recurrence and the initial conditions a0 = 1, a1 = 2.

Define the sequence {bn} by b2n = a2
n−1 + a2

n, b2n+1 = an(an−1 + an+1). Then

2b2n+1 + b2n = 2anan+1 + 2an−1an + a2
n−1 + a2

n

= 2anan+1 + an−1an+1 + a2
n

= a2
n+1 + a2

n = b2n+2,

and similarly 2b2n + b2n−1 = b2n+1, so that {bn} satisfies the same recurrence as {an}.
Since further b0 = 1, b1 = 2 (where we use the recurrence for {an} to calculate a−1 = 0),
we deduce that bn = an for all n. In particular, a2

n + a2
n+1 = b2n+2 = a2n+2.

Second solution: Note that

1

1− 2x− x2
=

1

2
√

2

( √
2 + 1

1− (
√

2 + 1)x
+

√
2− 1

1− (1−
√

2)x

)

=
1

2
√

2

(
∞∑
n=0

(
√

2 + 1)n+1xn −
∞∑
n=0

(1−
√

2)n+1xn

)
,
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so that an = 1
2
√

2

(
(
√

2 + 1)n+1 − (1−
√

2)n+1
)
. A simple computation (omitted here)

now shows that a2
n + a2

n+1 = a2n+2.

A–4 Denote the series by S, and note that

S =
∞∑
m=1

∞∑
n=1

1

(3m/m)(3m/m+ 3n/n)
=

∞∑
m=1

∞∑
n=1

1

(3n/n)(3m/m+ 3n/n)
,

where the second equality follows by interchanging m and n. Thus

2S =
∑
m

∑
n

(
1

(3m/m)(3m/m+ 3n/n)
+

1

(3n/n)(3m/m+ 3n/n)

)
=

∑
m

∑
n

1

(3m/m)(3n/n)

=

(
∞∑
n=1

n

3n

)2

.

But
∑∞

n=1 n/3
n = 3/4 (since, e.g., it’s f ′(1), where f(x) =

∑∞
n=0 x

n/3n = 3/(3 − x)),
and we conclude that S = 9/32.

A–5 First solution: (by Reid Barton) Let r1, . . . , r1999 be the roots of P . Draw a disc of
radius ε around each ri, where ε < 1/3998; this disc covers a subinterval of [−1/2, 1/2]
of length at most 2ε, and so of the 2000 (or fewer) uncovered intervals in [−1/2, 1/2],
one, which we call I, has length at least δ = (1− 3998ε)/2000 > 0. We will exhibit an
explicit lower bound for the integral of |P (x)|/P (0) over this interval, which will yield
such a bound for the entire integral.

Note that
|P (x)|
|P (0)|

=
1999∏
i=1

|x− ri|
|ri|

.

Also note that by construction, |x − ri| ≥ ε for each x ∈ I. If |ri| ≤ 1, then we have
|x−ri|
|ri| ≥ ε. If |ri| > 1, then

|x− ri|
|ri|

= |1− x/ri| ≥ 1− |x/ri| ≥ 1− 1/2 = 1/2 > ε.

We conclude that
∫
I
|P (x)/P (0)| dx ≥ δε, independent of P .

Second solution: It will be a bit more convenient to assume P (0) = 1 (which we may
achieve by rescaling unless P (0) = 0, in which case there is nothing to prove) and

to prove that there exists D > 0 such that
∫ 1

−1
|P (x)| dx ≥ D, or even such that∫ 1

0
|P (x)| dx ≥ D.

We first reduce to the case where P has all of its roots in [0, 1]. If this is not the case,
we can factor P (x) as Q(x)R(x), where Q has all roots in the interval and R has none.
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Then R is either always positive or always negative on [0, 1]; assume the former. Let
k be the largest positive real number such that R(x)− kx ≥ 0 on [0, 1]; then∫ 1

−1

|P (x)| dx =

∫ 1

−1

|Q(x)R(x)| dx >
∫ 1

−1

|Q(x)(R(x)− kx)| dx,

and Q(x)(R(x)− kx) has more roots in [0, 1] than does P (and has the same value at

0). Repeating this argument shows that
∫ 1

0
|P (x)| dx is greater than the corresponding

integral for some polynomial with all of its roots in [0, 1].

Under this assumption, we have P (x) = c
∏1999

i=1 (x − ri) for some ri ∈ (0, 1]. Since
P (0) = −c

∏
ri = 1, we have |c| ≥

∏
|r−1
i | ≥ 1.

Thus it suffices to prove that if Q(x) is a monic polynomial of degree 1999 with all of

its roots in [0, 1], then
∫ 1

0
|Q(x)| dx ≥ D for some constant D > 0. But the integral

of
∫ 1

0

∏1999
i=1 |x − ri| dx is a continuous function for ri ∈ [0, 1]. The product of all of

these intervals is compact, so the integral achieves a minimum value for some ri. This
minimum is the desired D.

Note: combining the two approaches gives a constructive solution with a constant that
is better, but is still far from optimal. I don’t know offhand whether it is even known
what the optimal constant and/or the polynomials achieving that constant are.

A–6 Rearranging the given equation yields the much more tractable equation

an
an−1

= 6
an−1

an−2

− 8
an−2

an−3

.

Let bn = an/an−1; with the initial conditions b2 = 2, b3 = 12, one easily obtains
bn = 2n−1(2n−2 − 1), and so

an = 2n(n−1)/2

n−1∏
i=1

(2i − 1).

To see that n divides an, factor n as 2km, with m odd. Then note that k ≤ n ≤
n(n − 1)/2, and that there exists i ≤ m − 1 such that m divides 2i − 1, namely
i = φ(m) (Euler’s totient function: the number of integers in {1, . . . ,m} relatively
prime to m).

B–1 The answer is 1/3. Let G be the point obtained by reflecting C about the line AB.
Since ∠ADC = π−θ

2
, we find that ∠BDE = π − θ − ∠ADC = π−θ

2
= ∠ADC =

π − ∠BDC = π − ∠BDG, so that E,D,G are collinear. Hence

|EF | = |BE|
|BC|

=
|BE|
|BG|

=
sin(θ/2)

sin(3θ/2)
,

where we have used the law of sines in4BDG. But by l’Hôpital’s Rule, limθ→0
sin(θ/2)
sin(3θ/2)

=

limθ→0
cos(θ/2)

3 cos(3θ/2)
= 1/3.
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B–2 Suppose that P does not have n distinct roots; then it has a root of multiplicity at
least 2, which we may assume is x = 0 without loss of generality. Let xk be the greatest
power of x dividing P (x), so that P (x) = xkR(x) with R(0) 6= 0; a simple computation
yields

P ′′(x) = k(k − 1)xk−2R(x) + 2kxk−1R′(x) + xkR′′(x).

Since R(0) 6= 0 and k ≥ 2, we conclude that the greatest power of x dividing P ′′(x)
is xk−2. But P (x) = Q(x)P ′′(x), and so x2 divides Q(x). We deduce (since Q is
quadratic) that Q(x) is a constant C times x2; in fact, C = 1/(n(n− 1)) by inspection
of the leading-degree terms of P (x) and P ′′(x).

Now if P (x) =
∑n

j=0 ajx
j, then the relation P (x) = Cx2P ′′(x) implies that aj =

Cj(j − 1)aj for all j; hence aj = 0 for j ≤ n− 1, and we conclude that P (x) = anx
n,

which has all identical roots.

B–3 We first note that ∑
m,n>0

xmyn =
xy

(1− x)(1− y)
.

Subtracting S from this gives two sums, one of which is∑
m≥2n+1

xmyn =
∑
n

yn
x2n+1

1− x
=

x3y

(1− x)(1− x2y)

and the other of which sums to xy3/[(1− y)(1− xy2)]. Therefore

S(x, y) =
xy

(1− x)(1− y)
− x3y

(1− x)(1− x2y)
− xy3

(1− y)(1− xy2)

=
xy(1 + x+ y + xy − x2y2)

(1− x2y)(1− xy2)

and the desired limit is lim(x,y)→(1,1) xy(1 + x+ y + xy − x2y2) = 3.

B–4 We make repeated use of the following fact: if f is a differentiable function on all of
R, limx→−∞ f(x) ≥ 0, and f ′(x) > 0 for all x ∈ R, then f(x) > 0 for all x ∈ R.
(Proof: if f(y) < 0 for some x, then f(x) < f(y) for all x < y since f ′ > 0, but then
limx→−∞ f(x) ≤ f(y) < 0.)

From the inequality f ′′′(x) ≤ f(x) we obtain

f ′′f ′′′(x) ≤ f ′′(x)f(x) < f ′′(x)f(x) + f ′(x)2

since f ′(x) is positive. Applying the fact to the difference between the right and left
sides, we get

1

2
(f ′′(x))2 < f(x)f ′(x).
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Adding 1
2
f ′(x)f ′′′(x) to both sides and again invoking the original bound f ′′′(x) ≤ f(x),

we get

1

2
[f ′(x)f ′′′(x) + (f ′′(x))2] < f(x)f ′(x) +

1

2
f ′(x)f ′′′(x) ≤ 3

2
f(x)f ′(x).

Applying the fact again, we get

1

2
f ′(x)f ′′(x) <

3

4
f(x)2.

Multiplying both sides by f ′(x) and applying the fact once more, we get

1

6
(f ′(x))3 <

1

4
f(x)3.

From this we deduce f ′(x) < (3/2)1/3f(x) < 2f(x), as desired.

Note: I don’t know what the best constant is, except that it is not less than 1 (because
f(x) = ex satisfies the given conditions).

B–5 We claim that the eigenvalues of A are 0 with multiplicity n− 2, and n/2 and −n/2,
each with multiplicity 1. To prove this claim, define vectors v(m), 0 ≤ m ≤ n − 1,
componentwise by (v(m))k = eikmθ, and note that the v(m) form a basis for Cn. (If
we arrange the v(m) into an n × n matrix, then the determinant of this matrix is a
Vandermonde product which is nonzero.) Now note that

(Av(m))j =
n∑
k=1

cos(jθ + kθ)eikmθ =
1

2

(
eijθ

n∑
k=1

eik(m+1)θ + e−ijθ
n∑
k=1

eik(m−1)θ

)
.

Since
∑n

k=1 e
ik`θ = 0 for integer ` unless n | `, we conclude that Av(m) = 0 for m = 0

or for 2 ≤ m ≤ n − 1. In addition, we find that (Av(1))j = n
2
e−ijθ = n

2
(v(n−1))j and

(Av(n−1))j = n
2
eijθ = n

2
(v(1))j, so that A(v(1) ± v(n−1)) = ±n

2
(v(1) ± v(n−1)). Thus

{v(0), v(2), v(3), . . . , v(n−2), v(1) + v(n−1), v(1) − v(n−1)} is a basis for Cn of eigenvectors of
A with the claimed eigenvalues.

Finally, the determinant of I +A is the product of (1 + λ) over all eigenvalues λ of A;
in this case, det(I + A) = (1 + n/2)(1− n/2) = 1− n2/4.

B–6 Choose a sequence p1, p2, . . . of primes as follows. Let p1 be any prime dividing an
element of S. To define pj+1 given p1, . . . , pj, choose an integer Nj ∈ S relatively prime
to p1 · · · pj and let pj+1 be a prime divisor of Nj, or stop if no such Nj exists.

Since S is finite, the above algorithm eventually terminates in a finite sequence p1, . . . , pk.
Let m be the smallest integer such that p1 · · · pm has a divisor in S. (By the assumption
on S with n = p1 · · · pk, m = k has this property, so m is well-defined.) If m = 1, then
p1 ∈ S, and we are done, so assume m ≥ 2. Any divisor d of p1 · · · pm in S must be a
multiple of pm, or else it would also be a divisor of p1 · · · pm−1, contradicting the choice
of m. But now gcd(d,Nm−1) = pm, as desired.
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